Изобретение относится к области ракетной техники, а именно к разработке рецептуры малодымного бронесостава и бронированию им зарядов твердого ракетного топлива (ТРТ), и может быть использовано при изготовлении маршевых ракетных двигателей твердого топлива (РДТТ) управляемых ракет (УР).
Известен бронесостав для покрытия зарядов на основе ацетилцеллюлозы: пат. RU 2179989 от 27.02.2002 г., МПК С09Д 101/12 - прототип, обеспечивающий низкий уровень дымообразования, но имеющий невысокую теплостойкость, что при времени работы заряда более 10…15 с приводит к прогару бронепокрытия заряда и его аномальной работе.
Известны бронесоставы на основе акрилатных соединений, применяющиеся для бронирования зарядов методом заливки: пат. RU 2220937 от 10.01.2004 г., RU 2283295 от 10.09.2006 г., RU 2261240 от 27.09.2005 г., которые имеют высокую теплостойкость, но большое дымообразования, а также пат. RU 2316528 C1 C06B 45/28, C06D 5/00 от 10.02.2008 г., взятый за прототип.
Технической задачей патентуемого изобретения является разработка теплостойкого бронесостава с низким уровнем дымообразования для бронирования зарядов ТРТ методом заливки.
Технический результат изобретения достигается за счет разработки рецептуры теплостойкого бронесостава с низким уровнем дымообразования для покрытия зарядов ТРТ методом заливки на основе акрилатных соединений - метилметакрилата (ММА), полибутилметакрилата (ПБМА), отверждаемых перекисью бензоила (ПБ), содержащего малодымный наполнительгидразодикарбонамид и олигоэфиракрилат марки МДФ-1 в качестве сшивающего агента, представляющий собой продукт конденсации фталевого ангидрида, диэтиленгликоля и метакриловой кислоты, при следующем соотношении компонентов, мас.%:
Заявляемые пределы соотношений компонентов определялись экспериментальным путем и являются оптимальными, обеспечивая удовлетворительные механические, адгезионные и технологические свойства бронесостава.
Рецептуры образцов бронесостава с различным содержанием компонентов, их свойства приведены в таблице в сравнении с прототипом.
Приготовление бронесостава осуществлялось в мешателе, снабженном вакуумной линией, следующим образом: в смеси ММА и олигоэфиракрилата марки МДФ-1 растворяли ПБМА при перемешивании, затем вводили ГДА, вновь проводили перемешивание до равномерного распределения порошкообразного ГДА во всем объеме содержимого мешателя, затем вводили раствор ПБ в части навески ММА и перемешивали до получения однородной массы, которую вакуумировали в течение 10…15 мин при остаточном давлении не более 20 мм рт.ст и температуре 20…25°С.
Покрытие зарядов осуществлялось методом заливки бронесостава в зазор между техоснасткой и установленным в нее зарядом с последующей выдержкой при температуре 80-85°С в течение 10-17 ч.
Из таблицы видно, что образцы заявляемого бронесостава имеют удовлетворительные механические, адгезионные свойства и жизнеспособность, но образец бронесостава №1 имеет высокую вязкость 19 Пз, что делает его непригодным для покрытия зарядов методом заливки, применяемом при использовании бронесоставов на основе акрилатных соединений. Образец бронесостава №5 в течение времени полимеризации расслаивается вследствие седиментации ГДА (осаждения), который представляет собой порошок, нерастворимый в акрилатных соединениях.
Теплостойкость патентуемого бронесостава и прототипа находятся на одном уровне, поскольку удельная теплоемкость и температура начала интенсивного термического разложения патентуемого бронесостава выше, чем у прототипа, коэффициент теплопроводности завышен незначительно, а коэффициент температуропроводности имеет одинаковые значения. При этом, имея удовлетворительную теплостойкость, мощность дымообразования патентуемого бронесостава значительно меньше прототипа, что обусловлено содержанием ГДА, повышенной температурой начала интенсивного термического разложения и отсутствием ненасыщенной олигоуретанакрилатной смолы Д-10ТМ, которая определяет высокий уровень дымообразования прототипа.
Патентуемым бронесоставом бронировались заряды диаметром 65 мм, длиной 100 мм и подвергались огневым стендовым испытаниям в составе РДТТ. Испытания показали, что при горении заряда в течение 20…50 с бронесостав сохраняется по всей длине заряда, обеспечивая теплозащиту камеры сгорания РДТТ от воздействия горячего потока продуктов сгорания ТРТ.
Работоспособность опытных зарядов, покрытых патентуемым бронесоставом в условиях ФГУП «НИИПМ», подтверждена попеременным и длительным термостатированием.
Таким образом, заявляемый бронесостав, применяемый для бронирования зарядов ТРТ методом заливки, является термостойким и имеет низкий уровень дымообразования.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ГРАНУЛИРОВАННОГО ТЕРМОПЛАСТИЧНОГО МНОГОКОМПОНЕНТНОГО БРОНЕСОСТАВА НА ОСНОВЕ АЦЕТИЛЦЕЛЛЮЛОЗЫ | 2004 |
|
RU2278098C1 |
ТЕРМОПЛАСТИЧНЫЙ МАЛОДЫМНЫЙ БРОНЕСОСТАВ НА ОСНОВЕ АЦЕТИЛЦЕЛЛЮЛОЗЫ С ПОВЫШЕННОЙ ТЕРМОСТОЙКОСТЬЮ | 2005 |
|
RU2276174C1 |
БРОНЕСОСТАВ | 2001 |
|
RU2179989C1 |
ОГНЕЭРОЗИОННОСТОЙКИЙ БРОНИРУЮЩИЙ СОСТАВ ДЛЯ ЗАРЯДА ИЗ БАЛЛИСТИТНОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА | 2006 |
|
RU2316528C1 |
СПОСОБ БРОНИРОВАНИЯ ВКЛАДНОГО ЗАРЯДА ТВЕРДОГО РАКЕТНОГО ТОПЛИВА ЭПОКСИДНЫМ БРОНЕСОСТАВОМ ПО БОКОВОЙ ПОВЕРХНОСТИ И СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ ЭПОКСИДНОГО БРОНЕСОСТАВА | 2011 |
|
RU2458243C1 |
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА | 2011 |
|
RU2483222C2 |
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА ДЛЯ РАЗГОННО-МАРШЕВОГО РАКЕТНОГО ДВИГАТЕЛЯ УПРАВЛЯЕМОЙ РАКЕТЫ | 2005 |
|
RU2282741C1 |
СПОСОБ ГРАНУЛИРОВАНИЯ МНОГОКОМПОНЕНТНОГО БРОНЕСОСТАВА НА ОСНОВЕ ТЕРМОЭЛАСТОПЛАСТА | 2008 |
|
RU2389605C2 |
ЗАЛИВОЧНАЯ КОМПОЗИЦИЯ ДЛЯ БРОНИРОВАНИЯ ЗАРЯДА ИЗ БАЛЛИСТИТНОГО ТОПЛИВА | 2005 |
|
RU2283295C1 |
НАПОЛНИТЕЛЬ ДЛЯ ПОВЫШЕНИЯ ОГНЕЭРРОЗИОННОЙ СТОЙКОСТИ ЛИТЬЕВЫХ БРОНЕСОСТАВОВ НА ОСНОВЕ НЕНАСЫЩЕННЫХ ПОЛИЭФИРНЫХ СМОЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2003 |
|
RU2225424C1 |
Изобретение относится к области ракетной техники, а именно к бронесоставу для покрытия заряда твердого ракетного топлива. Бронесостав содержит, мас.%: метилметакрилат 29-31, олигоэфиракрилат марки МДФ-1 9-11, полибутилметакрилат 16,5-18,5, гидразодикарбонамид 41-43, перекись бензоила 0,5-1,5. Изобретение позволяет существенно повысить теплостойкость бронесостава с обеспечением низкого уровня дымообразования. 1 табл.
Бронесостав для покрытия заряда твердого ракетного топлива, включающий метилметакрилат, полибутилметакрилат, в качестве отвердителя - перекись бензоила, отличающийся тем, что он дополнительно содержит малодымный наполнитель - гидразодикарбонамид, в качестве сшивающего агента - олигоэфиракрилат марки МДФ-1 при следующем соотношении компонентов, мас.%:
ОГНЕЭРОЗИОННОСТОЙКИЙ БРОНИРУЮЩИЙ СОСТАВ ДЛЯ ЗАРЯДА ИЗ БАЛЛИСТИТНОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА | 2006 |
|
RU2316528C1 |
БРОНЕСОСТАВ | 2001 |
|
RU2179989C1 |
ОГНЕЭРОЗИОННОСТОЙКАЯ ЗАЛИВОЧНАЯ КОМПОЗИЦИЯ С ПОВЫШЕННОЙ ДЕФОРМАЦИОННОЙ СПОСОБНОСТЬЮ | 2003 |
|
RU2261240C1 |
ОГНЕЭРОЗИОННОСТОЙКАЯ ЗАЛИВОЧНАЯ КОМПОЗИЦИЯ С ПОВЫШЕННОЙ ДЕФОРМАЦИОННОЙ СПОСОБНОСТЬЮ | 2003 |
|
RU2261240C1 |
Авторы
Даты
2011-02-27—Публикация
2009-07-28—Подача