БРОНЕСОСТАВ ДЛЯ ПОКРЫТИЯ ЗАРЯДА ТВЕРДОГО РАКЕТНОГО ТОПЛИВА Российский патент 2011 года по МПК C09D101/12 C06D5/00 F02K9/08 

Описание патента на изобретение RU2412969C1

Изобретение относится к области ракетной техники, а именно к разработке рецептуры малодымного бронесостава и бронированию им зарядов твердого ракетного топлива (ТРТ), и может быть использовано при изготовлении маршевых ракетных двигателей твердого топлива (РДТТ) управляемых ракет (УР).

Известен бронесостав для покрытия зарядов на основе ацетилцеллюлозы: пат. RU 2179989 от 27.02.2002 г., МПК С09Д 101/12 - прототип, обеспечивающий низкий уровень дымообразования, но имеющий невысокую теплостойкость, что при времени работы заряда более 10…15 с приводит к прогару бронепокрытия заряда и его аномальной работе.

Известны бронесоставы на основе акрилатных соединений, применяющиеся для бронирования зарядов методом заливки: пат. RU 2220937 от 10.01.2004 г., RU 2283295 от 10.09.2006 г., RU 2261240 от 27.09.2005 г., которые имеют высокую теплостойкость, но большое дымообразования, а также пат. RU 2316528 C1 C06B 45/28, C06D 5/00 от 10.02.2008 г., взятый за прототип.

Технической задачей патентуемого изобретения является разработка теплостойкого бронесостава с низким уровнем дымообразования для бронирования зарядов ТРТ методом заливки.

Технический результат изобретения достигается за счет разработки рецептуры теплостойкого бронесостава с низким уровнем дымообразования для покрытия зарядов ТРТ методом заливки на основе акрилатных соединений - метилметакрилата (ММА), полибутилметакрилата (ПБМА), отверждаемых перекисью бензоила (ПБ), содержащего малодымный наполнительгидразодикарбонамид и олигоэфиракрилат марки МДФ-1 в качестве сшивающего агента, представляющий собой продукт конденсации фталевого ангидрида, диэтиленгликоля и метакриловой кислоты, при следующем соотношении компонентов, мас.%:

метилметакрилат 29-31 олигоэфиракрилат марки МДФ-1 9-11 полибутилметакрилат 16,5-17,5 гидразодикарбонамид 41-43 перекись бензоила 0,5-1,5

Заявляемые пределы соотношений компонентов определялись экспериментальным путем и являются оптимальными, обеспечивая удовлетворительные механические, адгезионные и технологические свойства бронесостава.

Рецептуры образцов бронесостава с различным содержанием компонентов, их свойства приведены в таблице в сравнении с прототипом.

Приготовление бронесостава осуществлялось в мешателе, снабженном вакуумной линией, следующим образом: в смеси ММА и олигоэфиракрилата марки МДФ-1 растворяли ПБМА при перемешивании, затем вводили ГДА, вновь проводили перемешивание до равномерного распределения порошкообразного ГДА во всем объеме содержимого мешателя, затем вводили раствор ПБ в части навески ММА и перемешивали до получения однородной массы, которую вакуумировали в течение 10…15 мин при остаточном давлении не более 20 мм рт.ст и температуре 20…25°С.

Покрытие зарядов осуществлялось методом заливки бронесостава в зазор между техоснасткой и установленным в нее зарядом с последующей выдержкой при температуре 80-85°С в течение 10-17 ч.

Рецептура образцов бронесостава и их свойства при температуре испытаний 20°С Наименование компонента Содержание компонента, мас.% Прототип Образец №1 Образец №2 Образец №3 Образец №4 Образец №5 ММА Олигоэфиракрилат 10 24 31 30 29 40 марки МДФ-1 - 9 9 9 11 7 ПБМА - 22,5 16,5 18 18,5 10,5 Растворенная в бутилметакрилате механохимическая смесь ПБМА и молотой слюды 32-36 ГДА - 41 43 42 41 41 ПБ 1,5 0,5 0,5 1 1,5 1,5 Прочность при растяжении, кгс/см2 135,6-150,1 199,5 188,0 190,3 198,1 147,6 Относительная деформация, ε, % 8,5-11,0 3,52 5,64 4,87 4,70 7,20 Прочность адгезии к ТРТ, кгс/см2 95,7-97,1 90,2 90,1 92,4 91,9 88,1 Вязкость, Пз 15,0-16,9 19 12 13 13 7 Жизнеспособность, ч 3 2,5 2,5 2 1,5 1,5 Коэффициент теплопроводности, λ, Вт/см·град 0,229 - 0,262 0,243 0,268 - Коэффициент температуропроводности, α, м2 0,12·10-6 - 0,12·10-6 0,11·10-6 0,12·10-6 - Удельная теплоемкость, с, Дж/кг·град 1670 - 1820,0 1790,0 1810,0 - Температура начала интенсивного термического разложения, Тнир, °С 200 - 225-230 -//- -//- - Мощность дымообразования при температуре 20°С, N, м2 2,0 - 0,34 0,38 0,35 -

Из таблицы видно, что образцы заявляемого бронесостава имеют удовлетворительные механические, адгезионные свойства и жизнеспособность, но образец бронесостава №1 имеет высокую вязкость 19 Пз, что делает его непригодным для покрытия зарядов методом заливки, применяемом при использовании бронесоставов на основе акрилатных соединений. Образец бронесостава №5 в течение времени полимеризации расслаивается вследствие седиментации ГДА (осаждения), который представляет собой порошок, нерастворимый в акрилатных соединениях.

Теплостойкость патентуемого бронесостава и прототипа находятся на одном уровне, поскольку удельная теплоемкость и температура начала интенсивного термического разложения патентуемого бронесостава выше, чем у прототипа, коэффициент теплопроводности завышен незначительно, а коэффициент температуропроводности имеет одинаковые значения. При этом, имея удовлетворительную теплостойкость, мощность дымообразования патентуемого бронесостава значительно меньше прототипа, что обусловлено содержанием ГДА, повышенной температурой начала интенсивного термического разложения и отсутствием ненасыщенной олигоуретанакрилатной смолы Д-10ТМ, которая определяет высокий уровень дымообразования прототипа.

Патентуемым бронесоставом бронировались заряды диаметром 65 мм, длиной 100 мм и подвергались огневым стендовым испытаниям в составе РДТТ. Испытания показали, что при горении заряда в течение 20…50 с бронесостав сохраняется по всей длине заряда, обеспечивая теплозащиту камеры сгорания РДТТ от воздействия горячего потока продуктов сгорания ТРТ.

Работоспособность опытных зарядов, покрытых патентуемым бронесоставом в условиях ФГУП «НИИПМ», подтверждена попеременным и длительным термостатированием.

Таким образом, заявляемый бронесостав, применяемый для бронирования зарядов ТРТ методом заливки, является термостойким и имеет низкий уровень дымообразования.

Похожие патенты RU2412969C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ГРАНУЛИРОВАННОГО ТЕРМОПЛАСТИЧНОГО МНОГОКОМПОНЕНТНОГО БРОНЕСОСТАВА НА ОСНОВЕ АЦЕТИЛЦЕЛЛЮЛОЗЫ 2004
  • Куценко Геннадий Васильевич
  • Красильников Федор Сергеевич
  • Козьяков Алексей Васильевич
  • Летов Борис Павлович
  • Молчанов Владимир Федорович
  • Никитин Василий Тихонович
  • Васильева Ирина Анатольевна
RU2278098C1
ТЕРМОПЛАСТИЧНЫЙ МАЛОДЫМНЫЙ БРОНЕСОСТАВ НА ОСНОВЕ АЦЕТИЛЦЕЛЛЮЛОЗЫ С ПОВЫШЕННОЙ ТЕРМОСТОЙКОСТЬЮ 2005
  • Куценко Геннадий Васильевич
  • Красильников Федор Сергеевич
  • Летов Борис Павлович
  • Козьяков Алексей Васильевич
  • Молчанов Владимир Федорович
  • Пупин Николай Афанасьевич
  • Никитин Василий Тихонович
  • Васильева Ирина Анатольевна
RU2276174C1
БРОНЕСОСТАВ 2001
  • Талалаев А.П.
  • Степанов Е.С.
  • Молчанов В.Ф.
  • Козьяков А.В.
  • Пупин Н.А.
  • Красильников Ф.С.
  • Куценко Г.Н.
  • Летов Б.П.
  • Кузьмицкий Г.Э.
RU2179989C1
ОГНЕЭРОЗИОННОСТОЙКИЙ БРОНИРУЮЩИЙ СОСТАВ ДЛЯ ЗАРЯДА ИЗ БАЛЛИСТИТНОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2006
  • Красильников Федор Сергеевич
  • Закирова Ольга Викторовна
  • Елесина Светлана Дмитриевна
  • Летов Борис Павлович
  • Куценко Геннадий Васильевич
  • Охрименко Эдуард Федорович
  • Зорин Владимир Алексеевич
  • Энкин Эдуард Абрамович
  • Талалаев Анатолий Петрович
RU2316528C1
СПОСОБ БРОНИРОВАНИЯ ВКЛАДНОГО ЗАРЯДА ТВЕРДОГО РАКЕТНОГО ТОПЛИВА ЭПОКСИДНЫМ БРОНЕСОСТАВОМ ПО БОКОВОЙ ПОВЕРХНОСТИ И СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ ЭПОКСИДНОГО БРОНЕСОСТАВА 2011
  • Козьяков Алексей Васильевич
  • Кислицын Алексей Анатольевич
  • Красильников Федор Сергеевич
  • Куценко Геннадий Васильевич
  • Ковтун Виктор Евгеньевич
  • Филимонова Елена Юрьевна
  • Крестовский Александр Николаевич
RU2458243C1
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2011
  • Молчанов Владимир Федорович
  • Мертешев Владимир Григорьевич
  • Козьяков Алексей Васильевич
  • Андрейчук Владимир Андреевич
  • Кислицын Алексей Анатольевич
  • Максяев Леонид Анатольевич
  • Нешев Сергей Сергеевич
  • Амарантов Георгий Николаевич
RU2483222C2
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА ДЛЯ РАЗГОННО-МАРШЕВОГО РАКЕТНОГО ДВИГАТЕЛЯ УПРАВЛЯЕМОЙ РАКЕТЫ 2005
  • Молчанов Владимир Федорович
  • Пупин Николай Афанасьевич
  • Колесников Виталий Иванович
  • Козьяков Алексей Васильевич
  • Ибрагимов Наиль Гумерович
RU2282741C1
СПОСОБ ГРАНУЛИРОВАНИЯ МНОГОКОМПОНЕНТНОГО БРОНЕСОСТАВА НА ОСНОВЕ ТЕРМОЭЛАСТОПЛАСТА 2008
  • Филимонова Елена Юрьевна
  • Козьяков Алексей Васильевич
  • Красильников Федор Сергеевич
  • Летов Борис Павлович
  • Шилоносова Светлана Анатольевна
  • Огнев Владимир Васильевич
  • Чернопазова Надежда Федоровна
  • Куценко Геннадий Васильевич
  • Молчанов Владимир Федорович
  • Никитин Василий Тихонович
  • Прибыльский Ростислав Евгеньевич
  • Пупин Николай Афанасьевич
RU2389605C2
ЗАЛИВОЧНАЯ КОМПОЗИЦИЯ ДЛЯ БРОНИРОВАНИЯ ЗАРЯДА ИЗ БАЛЛИСТИТНОГО ТОПЛИВА 2005
  • Албутова Раиса Егоровна
  • Закирова Ольга Викторовна
  • Артёмова Ольга Викторовна
  • Красильников Фёдор Сергеевич
  • Летов Борис Павлович
  • Андрейчук Владимир Андреевич
  • Куценко Геннадий Васильевич
  • Талалаев Анатолий Петрович
  • Охрименко Эдуард Федорович
RU2283295C1
НАПОЛНИТЕЛЬ ДЛЯ ПОВЫШЕНИЯ ОГНЕЭРРОЗИОННОЙ СТОЙКОСТИ ЛИТЬЕВЫХ БРОНЕСОСТАВОВ НА ОСНОВЕ НЕНАСЫЩЕННЫХ ПОЛИЭФИРНЫХ СМОЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Албутова Р.Е.
  • Красильников Ф.С.
  • Летов Б.П.
  • Артемова О.В.
  • Закирова О.В.
  • Елесина С.Д.
  • Талалаев А.П.
  • Кузьмицкий Г.Э.
  • Куценко Г.В.
RU2225424C1

Реферат патента 2011 года БРОНЕСОСТАВ ДЛЯ ПОКРЫТИЯ ЗАРЯДА ТВЕРДОГО РАКЕТНОГО ТОПЛИВА

Изобретение относится к области ракетной техники, а именно к бронесоставу для покрытия заряда твердого ракетного топлива. Бронесостав содержит, мас.%: метилметакрилат 29-31, олигоэфиракрилат марки МДФ-1 9-11, полибутилметакрилат 16,5-18,5, гидразодикарбонамид 41-43, перекись бензоила 0,5-1,5. Изобретение позволяет существенно повысить теплостойкость бронесостава с обеспечением низкого уровня дымообразования. 1 табл.

Формула изобретения RU 2 412 969 C1

Бронесостав для покрытия заряда твердого ракетного топлива, включающий метилметакрилат, полибутилметакрилат, в качестве отвердителя - перекись бензоила, отличающийся тем, что он дополнительно содержит малодымный наполнитель - гидразодикарбонамид, в качестве сшивающего агента - олигоэфиракрилат марки МДФ-1 при следующем соотношении компонентов, мас.%:
метилметакрилат 29-31 олигоэфиракрилат марки МДФ-1 9-11 полибутилметакрилат 16,5-18,5 гидразодикарбонамид 41-43 перекись бензоила 0,5-1,5

Документы, цитированные в отчете о поиске Патент 2011 года RU2412969C1

ОГНЕЭРОЗИОННОСТОЙКИЙ БРОНИРУЮЩИЙ СОСТАВ ДЛЯ ЗАРЯДА ИЗ БАЛЛИСТИТНОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2006
  • Красильников Федор Сергеевич
  • Закирова Ольга Викторовна
  • Елесина Светлана Дмитриевна
  • Летов Борис Павлович
  • Куценко Геннадий Васильевич
  • Охрименко Эдуард Федорович
  • Зорин Владимир Алексеевич
  • Энкин Эдуард Абрамович
  • Талалаев Анатолий Петрович
RU2316528C1
БРОНЕСОСТАВ 2001
  • Талалаев А.П.
  • Степанов Е.С.
  • Молчанов В.Ф.
  • Козьяков А.В.
  • Пупин Н.А.
  • Красильников Ф.С.
  • Куценко Г.Н.
  • Летов Б.П.
  • Кузьмицкий Г.Э.
RU2179989C1
ОГНЕЭРОЗИОННОСТОЙКАЯ ЗАЛИВОЧНАЯ КОМПОЗИЦИЯ С ПОВЫШЕННОЙ ДЕФОРМАЦИОННОЙ СПОСОБНОСТЬЮ 2003
  • Талалаев А.П.
  • Красильников Ф.С.
  • Албутова Р.Е.
  • Летов Б.П.
  • Закирова О.В.
  • Елесина С.Д.
  • Амарантова С.А.
  • Никитин В.Т.
  • Куценко Г.В.
RU2261240C1
ОГНЕЭРОЗИОННОСТОЙКАЯ ЗАЛИВОЧНАЯ КОМПОЗИЦИЯ С ПОВЫШЕННОЙ ДЕФОРМАЦИОННОЙ СПОСОБНОСТЬЮ 2003
  • Талалаев А.П.
  • Красильников Ф.С.
  • Албутова Р.Е.
  • Летов Б.П.
  • Закирова О.В.
  • Елесина С.Д.
  • Амарантова С.А.
  • Никитин В.Т.
  • Куценко Г.В.
RU2261240C1

RU 2 412 969 C1

Авторы

Красильников Федор Сергеевич

Закирова Ольга Викторовна

Вилесова Нина Юрьевна

Куценко Геннадий Васильевич

Козьяков Алексей Васильевич

Власов Сергей Яковлевич

Кислицын Алексей Анатольевич

Нешев Сергей Сергеевич

Даты

2011-02-27Публикация

2009-07-28Подача