Изобретение относится к способам оптимизации режимов работы термоэлектрической батареи, позволяющих получить эффективное охлаждение.
Существующие схемы питания термоэлектрических батарей постоянным или переменным током [1, 2] не в полной мере учитывают процессы, происходящие внутри полупроводниковых ветвей и металлических спаев. Для того чтобы заряд обменялся в металлическом спае энергией с кристаллической решеткой, необходимо однократное или многократное столкновение с обменом энергии. Если не учитывать длину свободного пробега заряда до столкновения, то заряд может, выйдя из одной ветви полупроводника без соударений и обменом энергии, пройти через весь спай в другую ветвь полупроводника. Очевидно, что это снижает эффективность работы термоэлектрической батареи. Кроме того, напряжение питания также влияет на перемещение зарядов как в полупроводниковых ветвях, так и в металлических спаях. Изменение напряжения также влияет на паразитные тепловые выделения (джоулевое) в полупроводниковых ветвях.
Цель изобретения - улучшение процесса охлаждения и теплоотвода.
Это достигается тем, что в термоэлектрической батарее таким образом выбраны геометрические размеры полупроводниковых ветвей и металлических спаев, что учитываются параметры движения зарядов внутри полупроводника и металлических спаев. Такими параметрами являются длина свободного пробега заряда до соударения и энергия, передаваемая при столкновении заряда с кристаллической решеткой. Питание термоэлектрической батареи импульсным током с длительностью и скважностью импульсов, пропорциональной параметрам движения зарядов, позволяет оптимизировать режимы работы устройства, получив максимальное охлаждение. Пауза между импульсами должна иметь такой размер, чтобы заряды, попавшие в металлический спай, успели полностью обменяться энергией с кристаллической решеткой. Длительность и амплитуда импульса должны иметь такие параметры, индивидуальные для каждого полупроводникового материала, чтобы заряды в горячих и холодных спаях полностью прошли через полупроводниковые ветви и вновь задержались для обмена энергией в металлических спаях. Оптимизация импульсного питания в зависимости от свойств электротехнических материалов и геометрических размеров термоэлектрической батареи позволяет сгруппировать заряды в энергетические пакеты, которые синхронно перемещаются между горячими и холодными спаями, осуществляя дозированный энергетический обмен между материалом батареи и самими зарядами.
На чертеже представлена конструкция термоэлектрической батареи и параметров импульсного питания.
Конструкция термоэлектрической батареи представляет собой обычную батарею, в которой имеются строгие ограничения на размеры полупроводниковых ветвей. При изменении геометрических размеров, например высоты ветвей h или материалов термоэлектрической батареи, необходимо пропорционально изменить длительность Тд и скважность Тс, а также амплитуду импульсного питания.
Использование импульсного питания с учетом электро- и теплофизических свойств материалов термоэлементов позволяет повысить эффективность теплопередачи для любых типовых термоэлектрических батарей, а также увеличить интенсивность работы систем охлаждения.
Литература
1. Зорин И.В., Зорина З.Л. Термоэлектрические холодильники и генераторы. - Л.: Энергия, 1973.
2. Исмаилов Т.А. Термоэлектрические полупроводниковые устройства и интенсификаторы теплопередачи. - СПб.: Политехника, 2005.
название | год | авторы | номер документа |
---|---|---|---|
ТЕРМОЭЛЕКТРИЧЕСКИЙ ТЕПЛОВОЙ НАСОС С НАНОПЛЕНОЧНЫМИ ПОЛУПРОВОДНИКОВЫМИ ВЕТВЯМИ | 2013 |
|
RU2595911C2 |
ТЕРМОЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО С ТОНКОПЛЕНОЧНЫМИ ПОЛУПРОВОДНИКОВЫМИ ВЕТВЯМИ И УВЕЛИЧЕННОЙ ПОВЕРХНОСТЬЮ ТЕПЛООТВОДА | 2013 |
|
RU2575618C2 |
СИСТЕМА И СПОСОБ ОХЛАЖДЕНИЯ ЛЕНТОЧНО-КОЛОДОЧНОГО ТОРМОЗА | 2004 |
|
RU2256830C1 |
Термоэлектрический холодильник | 2020 |
|
RU2767429C2 |
Способ импульсного термоэлектрического неразрушающего контроля теплофизических свойств металлов и полупроводников | 2017 |
|
RU2665590C1 |
КОМБИНИРОВАННОЕ ПРОИЗВОДСТВО ТЕПЛА И ЭЛЕКТРОЭНЕРГИИ ДЛЯ ЖИЛЫХ И ПРОМЫШЛЕННЫХ ЗДАНИЙ С ИСПОЛЬЗОВАНИЕМ СОЛНЕЧНОЙ ЭНЕРГИИ | 2009 |
|
RU2513649C2 |
Способ термоэлектрического охлаждения | 2020 |
|
RU2762316C2 |
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ | 2014 |
|
RU2573608C1 |
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ | 2004 |
|
RU2280921C2 |
СИСТЕМА И СПОСОБ ДЛЯ ОХЛАЖДЕНИЯ ЛЕНТОЧНО-КОЛОДОЧНОГО ТОРМОЗА | 2003 |
|
RU2268416C2 |
Изобретение относится к способам оптимизации режимов работы термоэлектрической батареи. Способ оптимизации режимов работы термоэлектрической батареи с учетом геометрических и электротеплофизических параметров при импульсном питании заключается в том, что геометрические размеры полупроводниковых ветвей и металлических спаев термоэлектрической батареи оптимизированы в соответствии с электро- и теплофизическими свойствами материалов термоэлементов, при этом питание термоэлектрической батареи обеспечивается импульсным током с длительностью и скважностью импульсов, пропорциональной параметрам движения зарядов. В термоэлектрической батарее геометрические размеры полупроводниковых ветвей и металлических спаев выбраны таким образом, что учитываются параметры движения зарядов внутри полупроводника и металлических спаев. Такими параметрами являются длина свободного пробега заряда до соударения и энергия, передаваемая при столкновении заряда с кристаллической решеткой. Технический результат - улучшение процесса охлаждения и теплоотвода. 1 ил.
Способ оптимизации режимов работы термоэлектрической батареи с учетом геометрических и электротеплофизических параметров при импульсном питании, заключающийся в том, что геометрические размеры полупроводниковых ветвей и металлических спаев термоэлектрической батареи оптимизированы в соответствии с электро- и теплофизическими свойствами материалов термоэлементов, отличающийся тем, что питание термоэлектрической батареи обеспечивают импульсным током с длительностью и скважностью импульсов такой, что заряды в горячих и холодных спаях полностью проходят через полупроводниковые ветви и вновь задерживаются для обмена энергией в металлических спаях.
ИСМАИЛОВ Т.А | |||
Термоэлектрические полупроводниковые устройства и интенсификаторы теплопередачи | |||
- СПб.: Политехника, 2005 | |||
Способ термоэлектрического охлаждения | 1988 |
|
SU1612187A1 |
СИСТЕМА УПРАВЛЕНИЯ ПРЕЦИЗИОННЫМ НУЛЬ-ТЕРМОСТАТОМ | 2006 |
|
RU2352911C2 |
Термоэлектрическое термостатирующее устройство | 1981 |
|
SU978110A1 |
Авторы
Даты
2011-04-27—Публикация
2009-06-01—Подача