РАДИОПРОЗРАЧНОЕ УКРЫТИЕ ДЛЯ АНТЕНН, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И КРЕПЛЕНИЯ Российский патент 2011 года по МПК H01Q1/42 

Описание патента на изобретение RU2419927C1

Изобретение относится к радиотехнике и может быть использовано в качестве радиопрозрачных укрытий (РПУ) и обтекателей для защиты антенн, в том числе станций спутниковой связи, от влияния механических и климатических факторов.

К таким радиопрозрачным укрытиям предъявляются жесткие требования по обеспечению:

- радиопрозрачности на уровне 85-95% в заданном диапазоне длин волн для реальных условий эксплуатации;

- достаточной прочности и влагостойкости при небольшой массе;

- технологичности изготовления.

Известны различные радиопрозрачные укрытия, например, в виде сфероцилиндров преимущественно с монолитными радиопрозрачными стенками. Однако они имеют большую массу. Наиболее часто в качестве облегченных заполнителей используют соты, стеклосетчатые заполнители, пенопласты и синтактные пены (И.Г.Гуртовник, В.И.Соколов и др. «Радиопрозрачные изделия из стеклопластиков», М., «Мир», 2003 г., с.16-17, рис.1.4-2, 1.4-3, с.135, рис.5-1).

Известно многослойное радиопрозрачное укрытие (патент РФ №2314609, H01Q 1/42), содержащее N расположенных параллельно друг другу тонких слоев, между которыми помещены M=N-1 толстых слоев-наполнителей в виде ячеистой структуры с воздушными промежутками по типу пчелиных сот. Недостатком такого радиопрозрачного укрытия является проникновение со временем влаги в воздушные ячейки сот, что не обеспечивает длительную эксплуатацию в условиях повышенной влажности.

Известен обтекатель (патент РФ №2132586, H01Q 1/42), содержащий трехслойную оболочку с наружными и внутренними слоями из композиционных материалов, промежуточным слоем из полимерного материала и энергопоглощающий слой, выполненный в виде концентрических слоев из перекрещивающихся спиралей сухих арамидных нитей, размещенный между наружными слоями из композиционных материалов и промежуточным слоем из полимерного материала типа пенополиуретана. Недостатком обтекателей такого типа являются большие изменения диэлектрических характеристик материала при эксплуатации, вызванные неоднородностью материала в оболочке и неудовлетворительным воспроизводством от оболочки к оболочке.

Наиболее близким к изобретению является устройство для защиты антенн, особенно от влияния климатических факторов (DE 10128984, H01Q 1/42). Данное устройство состоит из прочных внутренней и внешней обшивок, между которыми находится слой жесткого пенопласта с закрытыми ячейками. Внешняя поверхность стенки связана с тонким слоем прочной пластмассы. Устройство опирается на платформу. Нижняя часть устройства выполнена более массивной из твердой пластмассы и губчатой резины. Такая конструкция самого устройства и конструкция стенки устройства имеет высокую влагостойкость и механическую прочность. Однако данное устройство невозможно изготовить послойно по внутреннему контуру на одной жесткой формообразующей оснастке (пуансоне), а изготовление нескольких единиц формообразующей оснастки и многоступенчатость сборочных операций приводят к накоплению технологических дефектов и, как следствие, к разбросу диэлектрических характеристик.

По способу изготовления многослойных стеклопластиковых конструкций радиопрозрачных укрытий наиболее близким является способ наслаивания и вакуумного формования (патент RU 2186444, H01Q 1/42), включающий выкладку на жесткой форме, выполненной по внутреннему контуру радиопрозрачного укрытия, слоя внутренней обшивки и его вакуумное формование, последующее приклеивание стеклосотопластовых панелей, выкладку слоя наружной обшивки и его вакуумное формование. Однако недостатком изготовления изделий с большой кривизной поверхности является сложность формования и приклеивания стеклосотопластовых панелей, заключающаяся в необходимости их подогрева перед приклеиванием с последующим закреплением эластичным материалом. Кроме того, проникновение со временем влаги в воздушные ячейки сот не обеспечивает длительную эксплуатацию в условиях повышенной влажности.

Задачей изобретения является разработка и создание механически прочного влагостойкого радиопрозрачного укрытия для антенн наряду с упрощением технологии его изготовления.

Поставленная задача решена за счет изменения структуры стенки радиопрозрачного укрытия, а именно радиопрозрачное укрытие для антенн сфероцилиндрической формы, имеющее многослойную конструкцию и одинаковую толщину стенки оболочки, выполненное без фланцев, содержит прочные внутреннюю и наружную обшивки из стеклопластика, между которыми находится слой-наполнитель из стеклосотопласта, приклеенного к внутренней обшивке радиопрозрачным быстроотверждающимся компаундом и заполненного синтактной пеной. Наружная обшивка с внутренней стороны, прилегающей к слою-наполнителю, армирована упрочняющей стеклосеткой, при этом диэлектрическая проницаемость ε наружной и внутренней обшивок больше диэлектрической проницаемости слоя наполнителя. Данная структура стенки оболочки радиопрозрачного укрытия для антенн отличается высокой однородностью, прочностью, влагостойкостью и технологичностью ее изготовления.

В качестве способа изготовления конструкции данного радиопрозрачного укрытия выбран метод наслаивания и вакуумного формования, который включает: выполнение на жесткой форме, повторяющей внутренний контур радиопрозрачного укрытия, слоя внутренней обшивки склеиванием набора стеклотканей разной толщины и его вакуумное формование; приклеивание слоя стеклосотопласта к внутренней обшивке укрытия радиопрозрачным быстроотверждающимся компаундом и заполнение этого слоя синтактной пеной; выполнение наружной обшивки склеиванием набора стеклотканей разной толщины, армирование ее с внутренней стороны стеклосеткой и вакуумное формование.

На фиг.1 показан фрагмент сечения стенки радиопрозрачного укрытия, где трехслойная оболочка с наружным и внутренним слоями 1 из композиционных материалов и промежуточным слоем из стеклосотовых панелей 2, заполненных синтактной пеной 3, содержит стеклосетку 4.

При изготовлении радиопрозрачного укрытия толщины слоев выбраны так, чтобы минимизировать потери на отражение в определенном частотном диапазоне. При этом экспериментально установлено, что необходимую радиопрозрачность, достаточную прочность и влагостойкость при небольшой массе радиопрозрачного укрытия наряду с технологичностью его изготовления обеспечивают:

- выполнение наружной и внутренней обшивок склеиванием, например, эпоксидным связующим набора стеклотканей различной толщины, например ткань ТК-3 ТУ6-19-062-100 толщиной 0,12 мм и ткань ТС 8/3-К-ТО ТУ 6-48-112-94 толщиной 0,29 мм;

- приклеивание стеклосотовых панелей к внутренней обшивке укрытия радиопрозрачным, быстроотверждающимся компаундом, который имеет диэлектрическую проницаемость (ε), например, не более 3,1 и скорость отверждения, например, не более 10 сек;

- заполнение стеклосотовых панелей синтактной пеной, представляющей собой композицию из стеклянных микросфер, равномерно распределенных в полимерной матрице и имеющей диэлектрическую проницаемость (ε), например, 1,7-2 и высокую влагостойкость;

- армирование наружной обшивки упрочняющей стеклосеткой толщиной, например, 0,5-1 мм и размером ячейки 1,9-2,4 мм с внутренней стороны, прилегающей к слою-наполнителю из стеклосотопласта, который заполнен синтактной пеной.

Изготовленное таким способом радиопрозрачное укрытие для антенн прошло испытание в реальных условиях эксплуатации. Таким образом, достигнут технический результат, выраженный в упрощении технологии изготовления механически прочного влагостойкого радиопрозрачного укрытия в виде сфероцилиндра, имеющего по всему контуру одинаковую толщину стенки, необходимый коэффициент прохождения электромагнитных волн и изготовленного послойно по внутреннему контуру на одной жесткой формообразующей оснастке. Совокупность конструкторско-технологических признаков данного технического решения позволяет на ее основе изготавливать радиопрозрачные укрытия для антенн и обтекателей применительно к различным условиям эксплуатации.

Похожие патенты RU2419927C1

название год авторы номер документа
КОНСТРУКЦИЯ ШИРОКОПОЛОСНОГО РАДИОПРОЗРАЧНОГО ОБТЕКАТЕЛЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2017
  • Биткин Владимир Евгеньевич
  • Денисов Александр Владимирович
  • Агапов Владимир Владимирович
  • Чертов Виталий Геннадьевич
  • Люлина Нина Александровна
  • Бородавин Андрей Викторович
  • Жидкова Ольга Геннадьевна
  • Лёвин Денис Сергеевич
  • Дунаева Александра Александровна
RU2722559C2
АНТЕННЫЙ ОБТЕКАТЕЛЬ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЯ АНТЕННОГО ОБТЕКАТЕЛЯ 2001
  • Погосян М.А.
  • Барковский А.Ф.
  • Рожков А.И.
  • Поляков Ю.Г.
  • Господарский С.А.
RU2186444C1
Радиопрозрачный обтекатель навигационной антенной системы вертолета 2021
  • Шадрин Александр Петрович
  • Кулиш Виктор Георгиевич
  • Харитонов Дмитрий Викторович
  • Русин Михаил Юрьевич
  • Силкин Андрей Николаевич
  • Хмельницкий Анатолий Казимирович
RU2789625C1
Способ изготовления композитной формообразующей оснастки для формования изделий из полимерных композиционных материалов 2019
  • Баранов Алексей Алексеевич
  • Мосиюк Виктория Николаевна
  • Мурашкин Юрий Германович
  • Крюков Алексей Михайлович
  • Волков Валерий Семенович
RU2720312C1
Теплозащитный экран бортовой антенны в головном антенном обтекателе 2022
  • Антонов Владимир Викторович
  • Воробьев Сергей Борисович
  • Васюков Максим Валерьевич
  • Гурьев Андрей Николаевич
  • Латыш Сергей Иванович
  • Шадрин Александр Петрович
  • Степанов Петр Александрович
  • Атрощенко Ирина Григорьевна
RU2794117C1
АНТЕННЫЙ ОБТЕКАТЕЛЬ ИЗ СЛОИСТОГО СТЕКЛОПЛАСТИКА 2014
  • Сисаури Виталий Ираклиевич
  • Алеев Владимир Александрович
  • Романов Сергей Владимирович
  • Любохинер Валентина Ивановна
  • Кульков Александр Алексеевич
RU2567734C1
СПОСОБ ИЗГОТОВЛЕНИЯ РЕФЛЕКТОРА 2017
  • Стадников Юрий Львович
RU2657078C1
Радиопрозрачная термостойкая трехслойная сотовая конструкция 2022
  • Корнейчук Алексей Николаевич
  • Волков Валерий Семенович
  • Чугунов Сергей Алексеевич
  • Кулагина Ирина Вячеславовна
  • Томчани Ольга Васильевна
RU2777234C1
АНТЕННЫЙ ОБТЕКАТЕЛЬ 2013
  • Бородай Феодосий Яковлевич
  • Воробьев Сергей Борисович
  • Зарюгин Геннадий Давыдович
  • Колоколов Леонид Иванович
  • Русин Михаил Юрьевич
RU2536339C1
СОСТАВ И СПОСОБ ИЗГОТОВЛЕНИЯ СВЯЗУЮЩЕГО, ПРЕПРЕГА И СОТОВОЙ ПАНЕЛИ 2010
  • Шокин Геннадий Игоревич
  • Шершак Павел Викторович
  • Карпейкин Игорь Сергеевич
  • Плихунов Виталий Валентинович
  • Ямаев Ренат Рашидович
  • Рябовол Дмитрий Юрьевич
  • Филипенок Андрей Федорович
  • Соловьев Виктор Александрович
  • Двейрин Александр Захарович
RU2460745C2

Иллюстрации к изобретению RU 2 419 927 C1

Реферат патента 2011 года РАДИОПРОЗРАЧНОЕ УКРЫТИЕ ДЛЯ АНТЕНН, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И КРЕПЛЕНИЯ

Изобретение относится к радиотехнике и может быть использовано в качестве радиопрозрачных укрытий и обтекателей для защиты антенн, в том числе станций спутниковой связи, от влияния механических и климатических факторов изобретения. Создание механически прочного влагостойкого радиопрозрачного укрытия для антенн сфероцилиндрической формы, имеющего по всему контуру одинаковую толщину стенки, с наружным и внутренним слоями (1) из композиционных материалов. промежуточным слоем из стеклосотовых панелей (2), заполненных синтактной пеной (3), поверх которых расположена стеклосетка (4), при упрощении технологии его изготовления и крепления является техническим результатом изобретения. Радиопрозрачное укрытие изготовлено послойно по внутреннему контуру на одной жесткой формообразующей оснастке. При этом радиопрозрачное укрытие выполнено без фланцев, имеет неразъемную конструкцию с металлическим переходником в виде шпангоута, соединенного с внутренней поверхностью многослойной стеклопластиковой оболочки винтами, «змеевидно», в сочетании с эпоксидным клеем, крепление шпангоута к несущей платформе осуществлено резьбовым соединением. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 419 927 C1

1. Радиопрозрачное укрытие для антенн сфероцилиндрической формы, содержащее трехслойную оболочку с внутренней и внешней обшивками из стеклопластика и промежуточным слоем из стеклосотопласта, заполненного синтактной пеной, выполненное без фланцев с одинаковой толщиной стенки оболочки, отличающееся тем, что внутренняя и внешняя обшивки выполнены из склеенного набора стеклотканей разной толщины, промежуточный слой из стеклосотопласта приклеен к внутренней обшивке радиопрозрачным быстроотверждающимся компаундом, а внешняя обшивка с внутренней стороны, прилегающей к промежуточному слою стеклосотопласта, армирована стеклосеткой, при этом диэлектрическая проницаемость внутренней и внешней обшивок больше диэлектрической проницаемости слоя наполнителя.

2. Способ изготовления радиопрозрачного укрытия для антенн, включающий выкладку на жесткой форме, выполненной по внутреннему контуру радиопрозрачного укрытия, слоя внутренней обшивки и его вакуумное формование, последующее приклеивание слоя стеклосотопласта, заполнение его синтактной пеной, выкладку внешней обшивки и вакуумное формование, отличающийся тем, что слои внутренней и внешней обшивок выполняют склеиванием набора стеклотканей различной толщины, приклеивание промежуточного слоя стеклосотопласта производят радиопрозрачным быстроотверждающимся компаундом, а наружная обшивка с внутренней стороны армируется стеклосеткой.

Документы, цитированные в отчете о поиске Патент 2011 года RU2419927C1

DE 10128984 A1, 09.01.2003
МНОГОСЛОЙНОЕ РАДИОПРОЗРАЧНОЕ УКРЫТИЕ ДЛЯ АНТЕНН 2006
  • Виниченко Юрий Петрович
  • Гращенко Юрий Георгиевич
  • Малютин Евгений Викторович
  • Туманская Алла Ефимовна
RU2314609C1
ОБТЕКАТЕЛЬ 1998
  • Бурдин Е.А.
  • Мороз Н.Г.
  • Майоров Б.Г.
  • Резаев М.С.
  • Кульков А.А.
RU2132586C1
АНТЕННЫЙ ОБТЕКАТЕЛЬ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЯ АНТЕННОГО ОБТЕКАТЕЛЯ 2001
  • Погосян М.А.
  • Барковский А.Ф.
  • Рожков А.И.
  • Поляков Ю.Г.
  • Господарский С.А.
RU2186444C1
Приспособление для обточки гребня соединительной головки резинового рукава воздушного тормоза подвижного состава 1940
  • Соловов В.В.
SU59329A1
АНТЕННЫЙ ОБТЕКАТЕЛЬ 2005
  • Седунов Эдуард Иванович
  • Славин Виталий Вадимович
  • Гелемей Мирослав Дмитриевич
  • Сибиряткин Анатолий Васильевич
  • Зайцева Нина Васильевна
  • Коробейников Герман Васильевич
  • Короткова Любовь Алексеевна
  • Иванова Любовь Николаевна
  • Белоус Леонид Леонидович
  • Тараканов Юрий Васильевич
RU2292101C2
CN 101567484 A, 28.10.2009
JP 2005244884 A, 08.09.2005
Способ использования тепла отходящих газов 1987
  • Виноградов Юрий Викторинович
  • Малахов Виктор Михайлович
  • Молчанов Виктор Владимирович
SU1502943A2

RU 2 419 927 C1

Авторы

Седунов Эдуард Иванович

Зайцева Нина Васильевна

Кудрин Олег Иванович

Сибиряткин Анатолий Васильевич

Тищенко Наталья Михайловна

Гречаник Галина Георгиевна

Югай Владимир Валентинович

Волков Петр Федорович

Рагзин Геннадий Маркович

Даты

2011-05-27Публикация

2009-12-02Подача