СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНОГО ФОТОННОГО КРИСТАЛЛА НА ОСНОВЕ ПЛЕНКИ ОПАЛА С КРЕМНИЕМ Российский патент 2011 года по МПК C30B29/10 B82B3/00 

Описание патента на изобретение RU2421551C1

Изобретение относится к области оптических устройств, конкретно к созданию трехмерных фотонных кристаллов с полной фотонной запрещенной зоной, которые могут применяться в системах оптической связи и передачи информации.

Пленки опала, заполненные аморфно-нанокристаллическим кремнием, представляют собой трехмерные (3М) фотонные кристаллы (ФК), позволяющие осуществлять контроль, управление и модификацию световых потоков благодаря большой величине относительной ширины полной фотонной запрещенной зоны (Δω/ω), что открывает пути их возможных применений в телекоммуникации и лазерной технике. В отличие от объемных опалов, опаловые пленки имеют больший коэффициент отражения, характеризующий содержание точечных и протяженных дефектов в объеме и на поверхности структуры, влияющих на качество кристаллов, и могут быть интегрированы в оптические и оптоэлектронные микроустройства (оптические чипы). Монокристаллические области в пленках достигают размеров 5*5 мкм (в объемных опалах 30÷50 мкм). Кремний выбирают из-за его высокого показателя преломления, прозрачности в ближней ИК-области, совместимости используемых технологических методик с планарной технологией.

Известен аналог /патент WO 2004063432, METHOD OF SYNTHESIS OF 3D SILICON COLLOIDAL PHOTONIC CRYSTALS BY MICROMOLDING IN INVERSE SILICA OPAL (MISO), 2004-07-29, C30B 29/60; G02B 6/12/, в котором предложен метод синтеза трехмерных кремниевых коллоидных фотонных кристаллов с помощью микрообработки инвертированных опалов из диоксида кремния. Он включает приготовление пленки опала из полимерных (латексных) сферических частиц с ГЦК (гранецентрированной кубической) структурой, осаждение слоя аморфного диоксида кремния регулируемой толщины золь-гель методом на поверхность полимерных (латексных) сферических частиц (вследствие их низкой термостойкости), удаление (растворение или отжиг) полимерных сферических частиц, осаждение слоя кремния с относительной толщиной 0.3019<Rsi/L<0.3995 (где RSi - радиус сферы с осажденным слоем аморфного кремния, L=2*R*√2 - параметр элементарной ячейки ГЦК структуры, R - радиус сферических частиц) с помощью термического разложения дисилана (давление 700 торр ≈ 70 кПа, температура 200÷400 °С), удаление слоя аморфного диоксида кремния с помощью травления в 3% водном растворе HF.

В результате авторы получили трехмерный (3М) фотонный кристалл с полной фотонной запрещенной зоной с относительной шириной Δω/ω=0.12 (ω - энергетическое положение центра фотонной запрещенной зоны) на длине волны 1.5 мкм, имеющий структуру инвертированного опала. Коэффициент отражения полученной структуры в области полной фотонной запрещенной зоны (ФЗЗ) равен 82% для L=1485 нм (соответствующий диаметр сферических частиц D=1050 нм), толщина слоя кремния 70 нм.

Недостатками аналога являются невысокий коэффициент отражения, т.к. при такой технологии происходит образование слоя массивного кремния на поверхности пленки опала, которое приводит к созданию неконтролируемых фотонных поверхностных состояний, и недостаточно высокая величина относительной ширины фотонной запрещенной зоны.

Прототипом предлагаемого способа является способ формирования кремниевых фотонных кристаллов на чипе (подложке) [On-chip natural assembly of silicon photonic bandgap crystals Y.A.Vlasov, X.-Z.Bo, J.C.Sturm, D.J.Norris. Nature 414289 (2001)], совпадающий по большинству существенных признаков. В нем производят приготовление пленки опала толщиной 5÷30 мкм с ГЦК (гранецентрированной кубической) структурой на вертикально-ориентированной кремниевой подложке методом контролируемого испарения дисперсионной среды (спирта) из 1% об. спиртовой суспензии сферических частиц диоксида кремния диаметром 760 нм при температурах ~(65÷80)°С, осаждение (нанесение) слоя кремния с относительной толщиной 0.354<RSi/L<0.428 с помощью методики low-pressure chemical vapour deposition (химического газофазного осаждения при низком давлении) на внутреннюю поверхность пор опаловой пленки при температуре (550÷580)°С с использованием моносилана в качестве исходного реагента, реактивное ионное травление образовавшегося слоя объемного кремния толщиной (0.2÷0.4) мкм с поверхности композита, удаление сферических частиц аморфного диоксида кремния с помощью жидкостного травления в HF.

В результате получили трехмерный фотонный кристалл с полной запрещенной зоной с относительной шириной Δω/ω=0.08 на длине волны 1.3 мкм, имеющий структуру инвертированного опала. Коэффициент отражения полученного инвертированного композита опал-кремний (диаметр шаров в исходной пленке D=760 нм (L=1070 нм)) в области полной фотонной запрещенной зоны практически равен 100% в направлении [111] и более 90% в направлении [100].

Недостатком прототипа является небольшая относительная ширина полной запрещенной зоны, ограничивающая возможность применения таких 3М фотонных кристаллов в широкополосных телекоммуникационных устройствах, и образование слоя массивного кремния на поверхности пленки опала, приводящего к возникновению неконтролируемых фотонных поверхностных состояний (дефектов в фотонной запрещенной зоне ФК), который перед проведением оптических экспериментов удаляли методом реактивного ионного травления. Кроме этого, центр ФЗЗ полученного трехмерного кристалла находится в области 1.3 мкм. Данный спектральный диапазон используется в системах передачи и информации, однако большинство современных телекоммуникационных приборов работают в области 1.5 мкм, совпадающей с максимальным коэффициентом пропускания оптических кварцевых волокон.

Предлагаемый способ решает задачу создания пленочного инвертированного композита опал-кремний с увеличенной шириной полной фотонной запрещенной зоны в спектральной области 1.5 мкм.

Задача решается способом получения трехмерного фотонного кристалла на основе пленки опала с кремнием, включающим осаждение гранецентрированной кубической пленки опала толщиной (5.0÷40.0) мкм из суспензии сферических частиц аморфного диоксида кремния в этиловом спирте со средним диаметром 880 нм, дисперсией диаметров частиц менее 1 % и концентрацией (0.5÷2)% об. на диэлектрическую подложку, сушку, осаждение в вакууме слоя аморфного кремния на внутреннюю поверхность пор пленки опала путем термического разложения смеси моносилана с аргоном с концентрацией 5% об. при давлении газовой смеси (50÷70) кПа, объемном расходе газовой смеси (0.02±0.01) см3/мин, температуре (520÷540)°С, продолжительности (5÷7) ч, травление пленки в водном растворе плавиковой кислоты для удаления сферических частиц аморфного диоксида кремния (инвертирование) и повторные сушку и осаждение слоя аморфного кремния на внутреннюю поверхность пор пленки опала при тех же условиях.

Как выявили авторы предлагаемого изобретения, при осуществлении данной совокупности операций появляется возможность изменения структурных параметров (относительной толщины слоя кремния в порах пленки опала в пределах 0.29<RSi/L<0.43) и связанных с ними оптических свойств (параметров фотонной запрещенной зоны), что приводит к созданию трехмерного ФК на основе пленочного опала и кремния, обладающего, в частности, полной запрещенной зоной с центром в области 1.5 мкм шириной Δω/ω=0.14÷0.16 и при этом коэффициентом отражения во всех направлениях не менее 95 %.

Исходная пленка опала состоит из монодисперсных сферических частиц аморфного диоксида кремния средним диаметром 880 нм (в соответствии с предварительным расчетом зонной структуры ФК с центром в области 1.5 мкм), образующих ГЦК решетку. Между SiO2 сферами имеются поры, объем которых составляет ~26% от общего объема пленки. Толщина пленки (5÷40) мкм обеспечивает получение полной ФЗЗ в области 1.5 мкм в инвертированном композите опал-кремний согласно исследованиям авторов. Увеличение толщины приводит к уменьшению адгезии пленки к подложке и к увеличению концентрации точечных и протяженных дефектов, а уменьшение - к отсутствию фотонно-кристаллической структуры пленки.

Осаждение слоя кремния проводится методом термического разложения смеси моносилана с аргоном с концентрацией 5 %об. при давлении газовой смеси (50÷70) кПа, т.к. такая смесь не взрывоопасна, в отличие от чистого моносилана и дисилана, применяемых, соответственно, в прототипе и аналоге.

При увеличении температуры разложения выше 540°С на поверхности пленки опала начинает осаждаться слой массивного кремния, приводящий к возникновению дефектов в фотонной запрещенной зоне ФК. При уменьшении температуры разложения ниже 520°С скорость разложения уменьшается в 3÷5 раз и существенно увеличивается время.

Установлено, что при продолжительности осаждения в вакууме слоя аморфного кремния на внутреннюю поверхность пор пленки опала менее пяти часов поры заполняются не полностью, а при времени более семи часов появляется слой объемного кремния на поверхности пленки.

Объемный расход газовой смеси (0,02±0,01) см3/мин при указанных выше значениях температуры и давления обеспечивает условие лимитирования скорости процесса заполнения пленки опала кремнием скоростью химической реакции терморазложения моносилана, а не скоростью массопереноса газофазных реагентов в порах опала, что необходимо для равномерного осаждения слоя аморфного кремния на внутреннюю поверхность пор пленки опала.

Данные режимы определены опытным путем.

Повторное термическое разложение позволяет дополнительно увеличить толщину слоя кремния в пленочном композите, определяющую тип (геометрию) структурных единиц, из которых состоит ФК, и, как следствие, позволяет модифицировать трансляционную симметрию ФК и связанные с ней фотонно-кристаллические свойства (фотонную зонную структуру) композита, обеспечивающие решение поставленных задач.

Способ осуществляется следующим образом.

Приготовливают спиртовую суспензию сферических частиц аморфного SiO2 средним диаметром 880 нм путем реакции гидролиза тетраэтоксисилана (ТЭОС) в спиртоаммиачной среде (метод Штобера [Stöber W, Fink A and Bohn E 1968 J. Colloid Interface Sci. 26 62]) или используют приобретенную, например, у компаний Bangs Laboratories Inc. или Duke Scientific Corp. Затем выращивают пленку опала на подложке плавленого кварца, стекла, кремния или сапфира. После этого проводят сушку полученной пленки на воздухе (при температуре 100÷150°С.) Далее проводят термическое разложение смеси моносилана с аргоном в порах пленки опала для осаждения равномерного слоя аморфного кремния на внутреннюю поверхность пор пленки опала. Затем проводят селективное вытравливание аморфного диоксида кремния из полученного композита (инвертирование). Далее повторяют описанные выше операции сушки и термического разложения смеси моносилана в тех же условиях.

Пример 1.

Для создания трехмерного ФК на основе пленочного опала и кремния была приготовлена суспензия путем реакции гидролиза тетраэтоксисилана (ТЭОС) в спиртоаммиачной среде. Для приготовления суспензии раствор в этиловом спирте, содержащий 0.28 мол/л ТЭОС, 4 мол/л NH3 и 7 мол/л H2O, ставился на 1.5 ч на магнитную мешалку при комнатной температуре. Получили 1 % об. суспензию сферических частиц аморфного SiO2 средним диаметром 880 нм с дисперсией размеров менее 1 %. Затем вырастили пленку опала на подложке из плавленого кварца аналогично методике, описанной в работе [Y.A.Vlasov et al. Nature 414 289 (2001)]. Для этого подложку вертикально поместили в 50 мл химический стакан, содержащий 30 мл 1 % спиртовой суспензии сферических частиц SiO2. Стакан нагрели таким образом, чтобы температура суспензии около дна была ~80°С, а у поверхности ~65°С. Данный градиент температуры организуется для создания конвективных потоков в суспензии, препятствующих седиментации частиц. Вследствие испарения спирта из суспензии уровень жидкости в стакане понижается и на поверхности подложки под действием капиллярных сил в течение 3 часов формируется пленка опала толщиной 15 мкм и длиной 8 мм, ширина пленки равна ширине подложки. После этого проводилась сушка полученной пленки на воздухе при температуре 120°С. Далее проводилось термическое разложение смеси моносилана в порах пленки опала для осаждения равномерного слоя аморфного кремния на внутреннюю поверхность пор пленки опала. Для этого пленка опала помещалась на металлический нагревательный столик в вакуумную камеру, камера откачивалась до давления 10 Па, температура нагревательного столика устанавливалась равной 530°С, откачка камеры продолжалась в течение 1 ч. С помощью регуляторов расхода газа в камеру подавали смесь моносилана (5% об.) с аргоном с расходом 0.02 см3/мин и давлением 60 кПа. Процесс заполнения продолжался 6 ч, затем прекращали подачу газовой смеси в камеру, выключали нагрев столика, и камера откачивалась до давления 10 Па в течение 30 мин. Далее проводилось селективное вытравливание аморфного диоксида кремния из полученного композита (инвертирование). Для этого образец помещали на 3 часа в 3% масс. раствор HF. Далее повторяли описанные выше операции сушки и термического разложения смеси моносилана в тех же условиях. Полученные образцы инвертированного композита опал-кремний (трехмерного фотонного кристалла) были окрашены в темно-коричневый цвет, имели яркое интерференционное окрашивание (иризацию) от синего до красного цветов, в зависимости от угла падения света. Из сопоставления экспериментальных спектров отражения и пропускания полученного трехмерного фотонного кристалла с теоретическими расчетами фотонной зонной структуры, выполненными методом плоских волн, показано, что он имеет полную фотонную запрещенную зону в области 1.5 мкм шириной Δω/ω=0.16. Экспериментально измеренное с помощью ИК-спектрометра Ocean Optics NIR256 значение коэффициента отражения в направлениях [111], [100] и [110] составило 99±1%.

Значения относительной толщины слоя кремния в порах инвертированного композита, полученные из сопоставления экспериментальных и теоретических спектров отражения, составили 0.29<RSi/L<0.43 (абсолютная толщина слоя 170 нм). Как показано методами оптической и сканирующей электронной микроскопии, слой объемного кремния на поверхности образца, приводящий к возникновению дефектов в фотонной запрещенной зоне ФК, отсутствует.

Пример 2.

То же, что в примере 1, но суспензия взята с концентрацией 0.5% об. В результате получили пленку опала толщиной 5 мкм, остальные характеристики трехмерного фотонного кристалла те же, что в примере 1.

Пример 3.

То же, что в примере 1, но суспензия взята с концентрацией 2.0% об.

В результате получили пленку опала толщиной 40 мкм, остальные характеристики трехмерного фотонного кристалла (в том числе ширина полной фотонной запрещенной зоны) те же, что в примере 1.

Пример 4.

То же, что в примере 1, но давление газовой смеси 50 кПа.

Результат аналогичен примеру 1, но толщина слоя кремния в порах инвертированного композита равна 0.30<RSi/L<0.42 (абсолютная толщина слоя 150 нм), ширина полной фотонной запрещенной зоны в области 1.5 мкм Δω/ω=0.15.

Пример 5.

То же, что в примере 1, но давление газовой смеси 70 кПа.

Результат аналогичен примеру 1, полученный трехмерный фотонный кристалл имеет ширину полной фотонной запрещенной зоны в области 1.5 мкм Δω/ω=0.16, но значение коэффициента отражения в направлениях [100] и [110] составило 98±1%.

Пример 6.

То же, что в примере 1, но температура 520°С.

В результате получили инвертированный композит опал-кремний (трехмерный фотонный кристалл), но толщина слоя кремния в порах инвертированного композита равна 0.31<RSi/L<0.41 (абсолютная толщина слоя 125 нм), ширина полной фотонной запрещенной зоны в области 1.5 мкм Δω/ω=0.14.

Пример 7.

То же, что в примере 1, но температура 540°С.

В результате получили инвертированный композит опал-кремний с теми же характеристиками, что и в примере 1 (шириной полной фотонной запрещенной зоны в области 1.5 мкм Δω/ω=0.16), но значение коэффициента отражения в направлениях [100] и [110] составило 96±1%, в направлении [111] - 98±1%.

Пример 8.

То же, что в примере 1, но продолжительность термического разложения 5 ч.

В результате получили трехмерный фотонный кристалл с теми же характеристиками, что в примере 4.

Пример 9.

То же, что в примере 1, но продолжительность термического разложения 7 ч. В результате получили инвертированный композит опал-кремний с теми же характеристиками, что и в примере 1 (шириной полной фотонной запрещенной зоны в области 1.5 мкм Δω/ω=0.16), но значение коэффициента отражения в направлениях [100] и [110] составило 96±1%, в направлении [111] - 96±1%.

Таким образом, проведенные эксперименты подтверждают создание трехмерных фотонных кристаллов на основе пленочного опала и кремния, обладающих полной запрещенной зоной с центром в области 1.5 мкм с относительной шириной Δω/ω=0.14÷0.16, с коэффициентом отражения во всех направлениях не менее 95%.

Похожие патенты RU2421551C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ФОТОННЫХ КРИСТАЛЛОВ ИЗ ОКСИДА КРЕМНИЯ 2006
  • Климонский Сергей Олегович
  • Синицкий Александр Сергеевич
  • Хохлов Павел Евгеньевич
  • Третьяков Юрий Дмитриевич
RU2358895C2
СПОСОБ УСИЛИНЕНИЯ МАГНИТООПТИЧЕСКОГО ЭФФЕКТА КЕРРА С ПОМОЩЬЮ ФОТОННОКРИСТАЛЛИЧЕСКИХ СТРУКТУР 2011
  • Елисеев Андрей Анатольевич
  • Саполетова Нина Александровна
  • Напольский Кирилл Сергеевич
  • Грунин Андрей Анатольевич
  • Федянин Андрей Анатольевич
RU2551401C2
СПОСОБ ФОРМИРОВАНИЯ ТЕРМОЧУВСТВИТЕЛЬНЫХ НАНОКОМПОЗИЦИОННЫХ ФОТОННЫХ КРИСТАЛЛОВ 2011
  • Шахнов Вадим Анатольевич
  • Панфилов Юрий Васильевич
  • Булыгина Екатерина Вадимовна
  • Моисеев Константин Михайлович
  • Янович Сергей Владиславович
  • Беседина Ксения Николаевна
  • Власов Андрей Игоревич
  • Токарев Сергей Владимирович
  • Якимец Дмитрий Вадимович
RU2467362C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИФУНКЦИОНАЛЬНЫХ ФОТОННЫХ КРИСТАЛЛОВ СО СТРУКТУРОЙ ИНВЕРТИРОВАННОГО ОПАЛА 2008
  • Климонский Сергей Олегович
  • Синицкий Александр Сергеевич
  • Бондаренко Евгений Алексеевич
  • Михнев Леонид Васильевич
  • Гусев Александр Сергеевич
  • Каргин Николай Иванович
  • Бондаренко Сергей Алексеевич
  • Абрамова Вера Владимировна
  • Самсонова Елена Валерьевна
RU2383082C1
СПОСОБ ФОРМИРОВАНИЯ ПЛЕНОК ФОТОННЫХ КРИСТАЛЛОВ (ФК) НА ПРОВОДЯЩИХ ПОДЛОЖКАХ 2007
  • Григорьев Сергей Валентинович
  • Напольский Кирилл Сергеевич
  • Саполетова Нина Александровна
  • Елисеев Андрей Анатольевич
  • Лукашин Алексей Викторович
  • Третьяков Юрий Дмитриевич
  • Григорьева Наталья Анатольевна
RU2371525C2
УЛЬТРАФИОЛЕТОВЫЙ ЛАЗЕР НА ОСНОВЕ ДВУМЕРНОГО ФОТОННОГО КРИСТАЛЛА 2008
  • Емельченко Геннадий Анатольевич
  • Грузинцев Александр Николаевич
  • Масалов Владимир Михайлович
  • Волков Владимир Тимофеевич
  • Баженов Анатолий Викторович
RU2378750C1
СПОСОБ ПОЛУЧЕНИЯ ФОТОННО-КРИСТАЛЛИЧЕСКИХ СТРУКТУР НА ОСНОВЕ МЕТАЛЛООКСИДНЫХ МАТЕРИАЛОВ 2011
  • Стриханов Михаил Николаевич
  • Каргин Николай Иванович
  • Бондаренко Евгений Алексеевич
  • Юсова Мария Вадимовна
  • Бондаренко Сергей Алексеевич
RU2482063C2
ТЕМПЕРАТУРНО-ЧУВСТВИТЕЛЬНЫЙ КОМПОЗИТ ДЛЯ ФОТОННЫХ КРИСТАЛЛОВ 2011
  • Ваньер Ноэль Р.
  • Декер Элдон Л.
  • Хеллринг Стюарт Д.
  • Сюй Сянлин
  • Парди Шон
  • Макколлам Грегори Дж.
RU2533812C1
СПОСОБ ФОРМИРОВАНИЯ СВЕРХРЕШЕТОК НАНОКРИСТАЛЛОВ НА ПРОВОДЯЩИХ ПОДЛОЖКАХ 2009
  • Елисеев Андрей Анатольевич
  • Напольский Кирилл Сергеевич
  • Горожанкин Дмитрий Федорович
  • Саполетова Нина Александровна
  • Лукашин Алексей Викторович
  • Лысков Николай Викторович
  • Добровольский Юрий Анатольевич
RU2433083C2
МНОГОСЛОЙНАЯ СТРУКТУРА, ОБРАЗОВАННАЯ СЛОЯМИ НАНОЧАСТИЦ, СО СВОЙСТВАМИ ОДНОМЕРНОГО ФОТОННОГО КРИСТАЛЛА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И ЕЕ ПРИМЕНЕНИЕ 2008
  • Колодреро Перес Сильвия
  • Оканья Хурадо Мануэль
  • Мигес Гарсия Эрнан Руй
RU2454688C2

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНОГО ФОТОННОГО КРИСТАЛЛА НА ОСНОВЕ ПЛЕНКИ ОПАЛА С КРЕМНИЕМ

Изобретение относится к области оптических устройств, конкретно к созданию трехмерных фотонных кристаллов с полной фотонной запрещенной зоной, которые могут применяться в системах оптической связи и передачи информации. Способ включает осаждение пленки опала толщиной 5.0÷40.0 мкм из суспензии сферических частиц аморфного диоксида кремния в этиловом спирте со средним диаметром 880 нм, дисперсией диаметров частиц менее 1% и концентрацией 0.5÷2% об. на диэлектрическую подложку, сушку, осаждение в вакууме слоя аморфного кремния на внутреннюю поверхность пор пленки опала путем термического разложения смеси моносилана с аргоном с концентрацией 5% об. при давлении газовой смеси 50÷70 кПа, объемном расходе газовой смеси 0.02±0.01 см3/мин, температуре 520÷540°C, продолжительности 5÷7 ч, травление пленки в водном растворе плавиковой кислоты для удаления сферических частиц аморфного диоксида кремния - инвертирование и повторные сушку и осаждение слоя аморфного кремния на внутреннюю поверхность пор пленки опала при тех же условиях. Способ решает задачу создания пленочного инвертированного композита опал-кремний с увеличенной шириной полной фотонной запрещенной зоны в спектральной области 1.5 мкм.

Формула изобретения RU 2 421 551 C1

Способ получения трехмерного фотонного кристалла на основе пленки опала с кремнием, включающий осаждение пленки опала толщиной (5,0÷40,0) мкм из суспензии сферических частиц аморфного диоксида кремния в этиловом спирте со средним диаметром 880 нм, дисперсией диаметров частиц менее 1% и концентрацией 0,5÷2 об.% на диэлектрическую подложку, сушку, осаждение в вакууме слоя аморфного кремния на внутреннюю поверхность пор пленки опала путем термического разложения смеси моносилана с аргоном с концентрацией 5 об.% при давлении газовой смеси 50÷70 кПа, объемном расходе газовой смеси 0,02±0,01 см3/мин, температуре 520÷540°С, продолжительности 5÷7 ч, травление пленки в водном растворе плавиковой кислоты для удаления сферических частиц аморфного диоксида кремния, инвертирование и повторные сушку и осаждение слоя аморфного кремния на внутреннюю поверхность пор пленки опала при тех же условиях.

Документы, цитированные в отчете о поиске Патент 2011 года RU2421551C1

VLASOV Y.A
et al, On-chip natural assembly of silicon photonic bandgap crystals, "Nature", 2001, 414, p.p.289-293
WO 2004063432 A1, 29.07.2004
JP 2000233999 A, 29.08.2000
US 2002062782 A1, 30.05.2002
PALLANIDINO L
et al, Synthesis, characterization and modeling of silicon based opals, "Journal of Non-Crystalline Solids", 2006, vol.352, No 9-20, p.p.1425-1429, abstract.

RU 2 421 551 C1

Авторы

Курдюков Дмитрий Александрович

Голубев Валерий Григорьевич

Даты

2011-06-20Публикация

2009-09-30Подача