Изобретение относится к способам очистки сточных вод от ионов хрома (III) и может быть использовано в электротехнической, приборостроительной, машиностроительной, металлургической и других отраслях промышленности, где применяют соединения хрома для нанесения покрытий; в кожевенном производстве, имеющем хромсодержащие стоки, а также при решении проблем окружающей среды.
Известны сорбционные способы очистки сточных вод от ионов хрома (III); в качестве сорбента используют модифицированные природные волокнистые материалы, например древесные опилки, целлюлозу, льнотресту, костру, модификация которых состоит в пропитке их смесью карбамида и фосфорной кислоты при температуре 90-95°С [Патент №2291113, МПК C02F 001/28, опубл. 10.01.2007]; древесные опилки, выдержанные в растворе фосфата натрия в течение 10 часов [Патент №2313388, МПК B01J 20/24, B01J 20/30, опубл. 27.12.2007]; модифицированная резиновая крошка, полученная при взаимодействии сульфидированной резиновой крошки с раствором гидроксида натрия [Патент №2221752, МПК C02F 001/42, B01J 39/04, опубл. 20.01.2004]; песок, подвергнутый электронно-лучевому облучению [Патент №2367611, МПК C02F 001/28, C02F 001/30, B01J 19/08, опубл. 20.09.2009]; смесь природного торфа, песка, глины или диатомина, которую смешивают с нефтью, водой, водным раствором ПАВ, затем обрабатывают оксидами кальция, магния, сушат и прокаливают [Патент №2187459, МПК C02F 001/28, опубл. 20.08.2002].
Недостатком этих методов является необходимость в длительной обработке сорбентов химическими реагентами или электронно-лучевым облучением, что усложняет технологию очистки сточных вод.
Предложен способ очистки сточных вод от ионов хрома (III) введением избытка осадителя - оксида или гидроксида магния. Недостатком способа является большой расход дорогостоящих реагентов, так как требуется 50-150% избыток осадителя по сравнению со стехиометрическими количествами, необходимость создания в растворе строго определенной величины рН, равной от 9,0 до 9,5 [Патент №2068396, МПК C02F 001/28, опубл. 27.10.1996].
Наиболее близким по техническому решению к заявленному изобретению является способ очистки сточных вод от хрома, который заключается в обработке их зольной жидкостью и лигнином [Патент №2088541, МПК C02F 001/28, C02F 001/62, опубл. 27.08.1997]. Зольную жидкость получают на кожевенных предприятиях при озолении сырья КРС, а лигнин производят на биохимических предприятиях. Время контакта сточных вод с зольной жидкостью и лигнином составляет от 2 до 18 часов в зависимости от необходимой степени очистки.
Недостатки способа прототипа - длительность процесса очистки, использование реагентов, которые предварительно необходимо получать при химической или биологической обработке сырья.
Технической задачей изобретения является увеличение скорости процесса очистки сточных вод от ионов хрома (III) при сохранении высокой степени очистки, расширение круга применяемых при обработке сточных вод реагентов.
Технический результат достигается тем, что в качестве реагента при очистке сточных вод от ионов хрома (III) применяют магнийсодержащий материал, который измельчают до зерен от 3 до 10 мм, время контакта реагента и сточной воды составляет 20-30 минут.
Магнийсодержащий материал, согласно проведенным анализам, состоит из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%).
Опыты по очистке сточных вод от ионов хрома (III), а также ионов меди (II) и железа (III) проводили, используя модельные растворы и сточные воды гальванического цеха.
Содержание ионов хрома (III) контролировали, применяя дифенилкарбазид в качестве реагента.
Согласно данному методу анализа хром окисляют до Сr2O7 2- в кислой среде персульфатаммония. Дифенилкарбазид образует с бихромат-ионами соединение фиолетового цвета. Метод обладает высокой чувствительностью, при λ=540 нм молярный коэффициент поглощения равен 4,2·104.
Содержание меди проводили спектрофотометрическим методом, переводя ион Cu2+ в аммиачный комплекс. Железо определяли фотометрическим сульфосалицилатным методом.
Эффективность предлагаемого способа очистки сточных вод от ионов Cr3+, Сu2+, Fe3+ и необходимость предлагаемых условий для достижения цели иллюстрируется следующими примерами.
Пример 1. В химические стаканы емкостью до 250 мл помещали по 100 мл растворов, содержащих сульфат хрома (III) с концентрацией 0,245 г/л, добавляли природный магнийсодержащий материал, состоящий из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%), измельченный до зерен размером от 3 до 10 мм, перемешивали магнитной мешалкой при комнатной температуре. Через определенные промежутки времени отбирали пробы раствора для анализа. В процессе эксперимента изменяли массу сорбента и время контакта фаз. Результаты исследования приведены в таблице 1.
Согласно полученным данным, после 10-минутного перемешивания смеси наблюдается полное (100%-ное) удаление ионов Сr3+ из растворов.
Пример 2. В химические стаканы емкостью до 250 мл помещали растворы, содержащие сульфат хрома (концентрация Сr3+ 24,5 мг/л), сульфат меди (концентрация Сu2+ 35,6 мг/л) и хлорид железа (III) (концентрация Fe3+ 22 мг/л), добавляли магнийсодержащий материал, состоящий из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%), измельченный до зерен размером от 3 до 10 мм, перемешивали магнитными мешалками. Через определенные промежутки времени отбирали пробы и определяли в них содержание хрома, меди и железа. Результаты исследования приведены в таблице 2.
По результатам исследований можно сделать заключение, что при добавлении магнийсодержащего материала, состоящего из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%) одновременно со 100%-ным удалением хрома (III) наблюдается удаление ионов Сu2+ и Fe3+.
Пример 3. В аналогичных условиях подвергали очистке сточные воды гальванического цеха завода ОАО «Прибор» (г.Курск), содержащие ионы хрома (III) - 1,1 мг/л, меди - 0,037 мг/л, железа (общего) - 4,1 мг/л.
К 150 мл сточной воды добавляли 3 г магнийсодержащего материала, состоящего из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%), измельченного до зерен 5-10 мм, перемешивали магнитной мешалкой в течение 30 минут. В отобранных пробах определяли содержание ионов хрома (III), а также ионов меди (II) и железа (общего) указанными выше методами. Результаты анализов приведены в таблице 3.
Полученные данные показывают, что удаление ионов хрома (III), меди (II) и железа (общего) из сточных вод при введении магнийсодержащего материала, состоящего из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%), происходит до норм, соответствующих ПДК.
Заявленный способ по сравнению с прототипом позволяет увеличить скорость процесса очистки сточных вод от ионов хрома (III), так как полное (100%-ное) удаление хрома (III) наблюдается за 10 - 20 минут контакта фаз, а по прототипу при 4-часовом контакте с реагентами содержание хрома (III) в воде остается равным 0,2-1,2 мг/л.
Другими преимуществами способа является:
- снижение затрат на очистку за счет использования природных сорбентов;
- одновременное удаление с ионами хрома (III) ионов меди (II) и железа (III);
- высокая степень очистки.
мин
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СОРБЦИОННОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ФЕНОЛОВ | 2009 |
|
RU2424193C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ХРОМА (III) И МЕДИ (II) | 2014 |
|
RU2579131C1 |
СПОСОБ СОРБЦИОННОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ КРАСИТЕЛЕЙ | 2010 |
|
RU2430888C1 |
СПОСОБ СОРБЕНТНОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ХРОМА(III), ЖЕЛЕЗА(III), МЕДИ(II) И КАДМИЯ(II) | 2012 |
|
RU2500623C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО СОРБЕНТА НА ОСНОВЕ КАРБОНАТА И ГИДРОКСИДА МАГНИЯ | 2012 |
|
RU2498850C1 |
Способ получения магнитных сорбентов для концентрирования патогенов с последующей постановкой масс-спектрометрии | 2020 |
|
RU2762805C1 |
СОРБЕНТ ДЛЯ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ПИТЬЕВОЙ ВОДЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2003 |
|
RU2255801C1 |
Способ очистки воды от комплексных соединений тяжелых металлов | 2020 |
|
RU2747686C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ МЕТАЛЛОВ | 2018 |
|
RU2686228C1 |
Способ очистки подотвальных вод и технологических растворов от меди | 2018 |
|
RU2686930C1 |
Изобретение может быть использовано в электротехнической, приборостроительной, машиностроительной и металлургической отраслях промышленности, в кожевенном производстве, где применяют соединения хрома (III). Для осуществления способа проводят обработку сточных вод магнийсодержащим материалом, состоящим из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%). Материал измельчают до размера зерен от 3 до 10 мм. Полное удаление ионов хрома (III) из сточных вод происходит при контакте фаз в течение 20-30 минут. Способ позволяет повысить скорость процесса очистки сточных вод от ионов хрома (III) при сохранении высокой степени очистки, а также удалять из воды ионы железа (III) и меди (II). Изобретение также расширяет круг применяемых для обработки сточных вод эффективных и недорогих реагентов. 3 табл.
Способ очистки сточных вод от ионов хрома (III), включающий их обработку реагентами, отличающийся тем, что в качестве реагента применяют магнийсодержащий материал, состоящий из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%), измельченный до зерен размером от 3 до 10 мм, время контакта фаз составляет 20-30 мин.
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ХРОМА | 1994 |
|
RU2088541C1 |
СПОСОБ ГЛУБОКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ХРОМА /Ш/ | 1991 |
|
RU2068396C1 |
Экономайзер | 0 |
|
SU94A1 |
ЛЕКАРСТВЕННОЕ СРЕДСТВО | 0 |
|
SU341490A1 |
CN 101407366 A, 15.04.2009. |
Авторы
Даты
2011-07-20—Публикация
2009-12-23—Подача