СПОСОБ ПОЛУЧЕНИЯ СТАЛИ В ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ Российский патент 2011 года по МПК C21C5/52 

Описание патента на изобретение RU2430973C1

Изобретение относится к области металлургии, в частности к способам получения стали в дуговой сталеплавильной печи.

Известен способ получения стали в электрической печи, включающий: получение кальциево-силикатного шлака с высоким содержанием извести во время периодов плавления и рафинирования, включающих нагревание шихты для получения стали в электрической сталеплавильной печи; введение кондиционера для шлака, состоящего из смеси обожженного до полного спекания магнезита (с содержанием от 35 до 94% MgO), легко обожженного магнезита, связующего вещества и углеродсодержащей добавки. Размер гранул в кондиционере для шлака: по меньшей мере 30% больше 0,2 мм и 40-80% менее 8 мм. При этом кондиционер для шлака вводят в количестве, достаточном для повышения уровня MgO в шлаке от 5 до 22%, кондиционер для шлака добавляют поэтапно на протяжении плавления и рафинирования во время работы электрической печи (RU 2005135628 от 16.11.2005, С21С 5/00).

К недостаткам способа относится:

1. Получение в электросталеплавильной печи кальциево-силикатного шлака. Связано это с тем, что только получение железистых шлаков с одновременно высоким содержанием оксида кальция позволяет эффективно проводить одну из важнейших операций электросталеплавильного производства - дефосфорацию. Кроме того, магнезиальный защитный гарнисаж представляет собой в основном ферриты магния, образование которых невозможно при использовании в электросталеплавильном процессе только кальциево-силикатного шлака.

2. Размер гранул кондиционера для шлака достаточно мал, что приводит к повышенному выносу с пылью и низкому усвоению.

3. Использование обожженного для полного спекания магнезита приводит к образованию труднорастворимой структуры, что увеличивает время получения шлака, насыщенного оксидом магния. В результате первичные сталеплавильные шлаки оказываются ненасыщенными MgO, что влечет за собой протекание износа футеровки с начала плавки до завершения усвоения магнезиального кондиционера.

4. Отсутствие в составе кондиционера оксида кальция в виде легкоплавких ферритов кальция. Это приводит к тому, что, несмотря на быстрое растворение связующего вещества, тугоплавкие частицы спеченного магнезита усваиваются шлаком медленней легкоплавких соединений. В результате первичные сталеплавильные шлаки оказываются ненасыщенными MgO, что влечет за собой протекание износа футеровки с начала плавки до завершения усвоения магнезиального кондиционера.

Известны способы получения стали в дуговой электросталеплавильной печи, включающие завалку в печь металлолома и чугуна, расплавление металлошихты, окисление кислородом, дефосфорацию стали путем присадки железной руды или агломерата и извести. При этом известь вводят в составе смеси, содержащей известково-магнезиальный ожелезненный флюс и известь при соотношении флюса к извести (0,15-0,50):1 в количестве 2,5-4,0% от массы плавки до достижения концентрации в шлаке MgO=8-15%, CaO 35-55%. Производят продувку газообразным кислородом для получения концентрации FeO не менее 15%. Скачивают шлак через порог рабочего окна и выпускают сталь в ковш. При выпуске стали в ковш осуществляют отсечку печного шлака. Присаживают в ковш известь в количестве 1,7-2,5% от массы жидкой стали и необходимые раскислители и легирующие (RU 2269577 от 13.07.2004, С21С 5/52, RU 2269578 от 13.07.2004, С21С 5/52).

Существенным недостатком использования известково-магнезиального ожелезненного флюса в указанных способах является низкое насыщение шлакового расплава оксидами магния в период продувки плавки и достаточно высокий расход данного флюса, что требует значительных затрат тепла. Кроме этого, высокое содержание в ожелезненном известково-магнезиальном флюсе оксидов кальция приводит под воздействием влаги атмосферы в процессе транспортировки и хранения к образованию значительного количества соединений Са(ОН)2, что способствует насыщению металла водородом в процессе продувки металла при присадке данного флюса.

Технология производства стали в дуговых сталеплавильных печах (ДСП) связана с формированием окисленного шлака, оказывающего негативное воздействие на футеровку агрегата. В связи с этим разработка методов снижения химического воздействия шлаков на огнеупорную футеровку является актуальной задачей.

Технический результат предлагаемого изобретения состоит в увеличении стойкости огнеупорной футеровки электросталеплавильной печи и повышении степени дефосфорации.

Указанный технический результат достигается тем, что в способе получения стали в дуговой электропечи, включающем завалку в печь шихты, ее нагрев, плавление, введение магнезиально-известкового флюса, порциями на протяжении плавления и рафинирования во время работы печи, продувку кислородом, согласно предлагаемому изобретению в качестве магнезиально-известкового флюса используются гранулы бикерамического состава, причем гранулы бикерамического состава вводят в количестве, обеспечивающем достижение соотношения между содержанием оксида магния в шлаке и футеровке

При необходимости дополнительно вводят железную руду до повышения содержания в шлаке окислов железа в пересчете на FeO не менее 12% (мас.)

Использование магнезиально-известкового флюса в виде гранул бикерамического состава с определенным градиентом химического состава, характеризующегося неравномерным содержанием основных оксидов в оболочке и ядре гранулы, позволяет обеспечить во флюсе высокую долю оксида кальция как связанного в легкоплавкие ферриты кальция, так и в виде свободной извести, защищенной от гидратации магнезиальной оболочкой. Химический состав материала представлен таблицей 1.

Бикерамический состав магнезиально-известкового флюса представлен следующим образом. Ядром гранулы является зерно доломита, на поверхности которого за счет высокотемпературного воздействия его с железистой компонентой сырьевой шихты образуются низкоплавкие фазы, такие как ферриты кальция и силикаты. Ядро гранулы приобретает термопластичное состояние, которое способствует налипанию на него магнезиальной составляющей, при этом происходит рост гранулы и пропитка ее легкоплавкими фазами. Рост гранулы прекращается по мере расхода легкоплавких фаз, связанного с пропиткой магнезии.

Центральная зона гранулы (ядро) содержит до 75% оксида кальция, до 25% периклаза, до 4% феррита кальция и до 2% силикатов, а периферийная, блокирующая доступ влаги воздуха к центру, включает до 90% периклаза, до 7% «замоноличенного» феррита кальция и до 5% силикатов магния и кальция.

Ферриты кальция обеспечивают быстрое растворение флюса, что крайне важно для ковшевого шлака. Свободная известь повышает основность ковшевого шлака, улучшая его рафинировочные свойства.

Диапазон значений соотношения содержания оксида магния в шлаке и футеровке в пределах 0,05-0,16 обеспечивает достаточную вязкость шлака, а также способствует созданию на поверхности огнеупоров защитного слоя (гарнисажа).

При расходе магнезиально-известкового флюса в общем количестве, обеспечивающем достижение соотношения между содержанием оксида магния в шлаке и футеровке имеет место высокий градиент химического потенциала между футеровкой и шлаком, что приводит к быстрому переходу оксида магния из футеровки в шлак, т.е. физико-химическому износу футеровки.

При расходе магнезиально-известкового флюса в общем количестве, обеспечивающем достижение соотношения между содержанием оксида магния в шлаке и футеровке - градиент химического потенциала между футеровкой и шлаком мал, и износ практически не происходит, но вязкость ковшевого шлака оказывается слишком велика для протекания рафинировочных процессов внепечной обработки.

При содержании FeO в шлаке менее 12% коэффициент распределения фосфора между металлом и шлаком имеет в различных условиях недостаточно высокие значения, что термодинамически препятствует переходу фосфора из металлического расплава в шлак и снижает эффективность рафинирования.

Заявляемый способ был реализован при выплавке стали в ДСП-100. Выплавка производилась по следующей схеме. Завалка состояла из металлолома и чугуна. Также были выполнены плавки без применения чугуна. Известково-магнезиальный флюс в виде гранул бикерамического состава (гранулы размерами от 4 до 40 мм (75% от 4 до 15 мм) присаживали в печь совместно с первой порцией извести через сводовое загрузочное устройство порциями по 100 кг до общего расхода 5-10 кг/т. При этом обеспечивалось соотношение между содержанием оксида магния в шлаке и футеровке в пределах 0,05-0,16, а содержание окислов железа в пересчете на FeO в шлаке более 12%.

Выпуск стали производили с отсечкой печного шлака. По расплавлению металлошихты и перед выпуском плавки отбирали пробы металла и шлака.

При проведении опытных плавок экспериментально установлено, что оптимальной является технология, осуществляемая по предложенному способу, который позволяет повысить степень дефосфорации, увеличить срок эксплуатации футеровки ДСП на 10-20%, увеличить суточную производительность ДСП и снизить себестоимость жидкой стали.

Использование известково-магнезиального флюса в виде гранул бикерамического состава в практике электросталеплавильного производства позволяет формировать эффективные рафинировочные шлаки, снижать их агрессивное воздействие на футеровку и способствует возникновению защитного шлакового гарнисажа на поверхности футеровки.

Таблица 1 Химический состав магнезиально-известкового флюса Материал Химический состав, % (мас.) MgO CaO SiO2 Al2O3 Fe2O3 Магнезиально-известковый флюс в виде бикерамических гранул 67,1 23,7 3,0 - 6.2

Похожие патенты RU2430973C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2008
  • Шешуков Олег Юрьевич
  • Некрасов Илья Владимирович
  • Гуляков Владимир Сергеевич
  • Сысолин Алексей Валентинович
RU2393235C1
СТАЛЕПЛАВИЛЬНЫЙ ФЛЮС 2008
  • Дмитриенко Юрий Александрович
  • Половинкина Раиса Сергеевна
  • Коптелов Виктор Николаевич
RU2363737C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2012
  • Бабенко Анатолий Алексеевич
  • Бурмасов Сергей Петрович
  • Воронцов Алексей Владимирович
  • Житлухин Евгений Геннадьевич
  • Зуев Михаил Васильевич
  • Зубаков Леонид Валерьевич
  • Мурзин Александр Владимирович
  • Петров Сергей Михайлович
  • Спирин Сергей Андреевич
  • Степанов Александр Игорьевич
  • Ушаков Максим Владимирович
RU2493263C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2016
  • Демидов Константин Николаевич
  • Возчиков Андрей Петрович
  • Борисова Татьяна Викторовна
  • Носенко Владимир Игоревич
  • Филатов Александр Николаевич
RU2645170C1
Способ выплавки стали в дуговой электросталеплавильной печи 2021
  • Бармин Артем Борисович
  • Краснов Алексей Владимирович
  • Паюсов Олег Игоревич
  • Шерстнев Владимир Александрович
  • Возчиков Андрей Петрович
  • Борисова Татьяна Викторовна
  • Демидов Константин Николаевич
  • Носенко Владимир Игоревич
  • Филатов Александр Николаевич
RU2757511C1
СПОСОБ ПОЛУЧЕНИЯ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2004
  • Павлов Вячеслав Владимирович
  • Кузнецов Евгений Павлович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Ботнев Константин Евгеньевич
  • Оржех Михаил Борисович
  • Обшаров Михаил Владимирович
  • Тиммерман Наталья Николаевна
  • Сычев Павел Евгеньевич
RU2269577C1
СПОСОБ ПОЛУЧЕНИЯ СТАЛИ 2007
  • Павлов Вячеслав Владимирович
  • Юрьев Алексей Борисович
  • Девяткин Юрий Дмитриевич
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Кузнецов Евгений Павлович
RU2364632C2
СПОСОБ ОБРАБОТКИ СТАЛИ В СТАЛЕРАЗЛИВОЧНОМ КОВШЕ 2009
  • Аксельрод Лев Моисеевич
  • Оржех Михаил Борисович
  • Кушнерев Илья Васильевич
  • Устинов Виталий Александрович
RU2413006C1
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ СТАЛЕПЛАВИЛЬНОГО ФЛЮСА 2020
  • Коростелев Сергей Павлович
  • Дунаев Владимир Валериевич
  • Реан Ашот Александрович
  • Сырескин Сергей Николаевич
  • Одегов Сергей Юрьевич
  • Таратухин Григорий Владимирович
  • Верзаков Василий Александрович
RU2738217C1
СПОСОБ ВЫПЛАВКИ РЕЛЬСОВОЙ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОПЕЧИ 2004
  • Кузнецов Евгений Павлович
  • Павлов Вячеслав Владимирович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Обшаров Михаил Владимирович
  • Оржех Михаил Борисович
  • Ботнев Константин Евгеньевич
  • Моренко Андрей Владимирович
  • Шуклин Алексей Владиславович
RU2269578C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ СТАЛИ В ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ

Изобретение относится к области металлургии, в частности к способу получения стали в дуговой сталеплавильной печи. Способ включает завалку в печь шихты, ее нагрев, плавление, введение магнезиально-известкового флюса порциями на протяжении плавления и рафинирования во время работы печи, продувку кислородом. В качестве магнезиально-известкового флюса используют гранулы бикерамического состава. Гранулы бикерамического состава вводят в количестве, обеспечивающем достижение соотношения между содержанием оксида магния в шлаке и футеровке печи (%MgO)шлак/(%MgO)футеровка=0,05-0,16. Дополнительно вводят железную руду до повышения содержания в шлаке окислов железа в пересчете на FeO не менее 12 мас.%. Использование изобретения обеспечивает увеличение стойкости футеровки печи и повышение степени дефосфорации за счет корректировки шлакового режима. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 430 973 C1

1. Способ получения стали в дуговой электропечи, включающий завалку в печь шихты, ее нагрев, плавление, введение магнезиально-известкового флюса порциями на протяжении плавления и рафинирования во время работы печи, продувку кислородом, отличающийся тем, что в качестве магнезиально-известкового флюса используют гранулы бикерамического состава, которые вводят в количестве, обеспечивающем достижение соотношения между содержанием оксида магния в шлаке и футеровке печи

2. Способ по п.1, отличающийся тем, что дополнительно вводят железную руду до повышения содержания в шлаке окислов железа в пересчете на FeO не менее 12 мас.%.

Документы, цитированные в отчете о поиске Патент 2011 года RU2430973C1

СПОСОБ ПОЛУЧЕНИЯ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2004
  • Павлов Вячеслав Владимирович
  • Кузнецов Евгений Павлович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Ботнев Константин Евгеньевич
  • Оржех Михаил Борисович
  • Обшаров Михаил Владимирович
  • Тиммерман Наталья Николаевна
  • Сычев Павел Евгеньевич
RU2269577C1
СПОСОБ ПОЛУЧЕНИЯ СТАЛЕПЛАВИЛЬНОГО ФЛЮСА 2008
  • Дмитриенко Юрий Александрович
  • Половинкина Раиса Сергеевна
  • Коптелов Виктор Николаевич
RU2381279C2
СТАЛЕПЛАВИЛЬНЫЙ ФЛЮС 2008
  • Дмитриенко Юрий Александрович
  • Половинкина Раиса Сергеевна
  • Коптелов Виктор Николаевич
RU2363737C1
JP 52076214 A, 27.06.1977
JP 11323424 A, 26.11.1999
СПОСОБ РАБОТЫ МАГНИТОТЕПЛОВОГО УСТРОЙСТВА 2001
  • Темерко А.В.
  • Барсуков Г.Е.
  • Бедбенов В.С.
RU2199025C1

RU 2 430 973 C1

Авторы

Аксельрод Лев Моисеевич

Оржех Михаил Борисович

Кушнерев Илья Васильевич

Даты

2011-10-10Публикация

2010-03-29Подача