Изобретение относится к области металлургии, в частности к литейным сплавам на основе алюминида никеля Ni3Al и изделиям из них, получаемым методом точного литья по выплавляемым моделям, и может быть использовано для изготовления деталей авиационных газотурбинных двигателей.
Исходя из условий эксплуатации сплавы для деталей газотурбинных двигателей, особенно сопловых и рабочих лопаток, наряду с жаропрочностью и жаростойкостью должны обладать высокой стойкостью к знакопеременным нагрузкам и высокой термостойкостью. В связи с этим в данной области техники актуальной проблемой является создание сплавов, обладающих оптимальным сочетанием высокой жаропрочности с сохранением на достаточном уровне пластичности.
Известен литой сплав на основе интерметаллида Ni3Аl, содержащий в мас.%: 7,8-9 алюминия, 4,5-5,5 хрома, 1,8-2,5 вольфрама, 4,5-5,5 молибдена, 0,6-1,2 титана, 0,007-0,02 углерода, 0,0015-0,015 лантана, 3,5-4,5 кобальта, никель - остальное (RU 2114206, опубликован 27.06.1998).
Сплав обладает недостаточной жаростойкостью при рабочих температурах выше 900°С и склонен к трещинообразованию.
Изделия из этого сплава, например проставки соплового аппарата, имеют ограниченный ресурс работы, что связано с низкой трещиностойкостью сплава при рабочих температурах выше 900°С в условиях малоцикловых и высокоцикловых нагрузок.
Известен сплав на основе интерметаллида Ni3Аl, содержащий в мас.%: 7,7-8,7 алюминия, 5-6 хрома, 2,5-3,5 вольфрама, 4,5-5,5 молибдена, 0,3-0,8 титана, 0,001-0,02 углерода, 0,015-0,025 иттрия, 3,5-4,5 кобальта, 1,2-1,8 рения, 0,1-1,0 тантала, никель и технологические примеси - остальное (RU 2221890, опубликован 20.01.2004). ВКНА-25П
Недостатками сплава являются низкая прочность и недостаточная жаростойкость в интервале температур 650-1000°С, кроме того, сплав плохо противостоит действию теплосмен.
Изделия из этого сплава, например бандажные полки ГТД, имеют низкий выход годного и недостаточную долговечность.
Наиболее близкими к предложенному изобретению являются литой сплав на основе интерметаллида Ni3Al и изделие, выполненное из него, раскрытые в патенте RU №2351673, опубликованном 10.04.2009. Сплав содержит в мас.%:
Никель и технологические примеси - остальное.
Несмотря на то что сплав обладает высокими жаростойкостью и жаропрочностью при рабочих температурах выше 900°С, его стойкость к циклическим изменениям температуры и трещиностойкость при резких теплосменах недостаточны для использования его в изделиях, работающих в указанном температурном диапазоне.
Изделия из этого сплава, например бандажные полки ГТД, имеют низкий ресурс работы из-за указанных недостатков сплава.
Задача, на решение которой направлено настоящее изобретение, заключается в разработке сплава и изделия, выполненного из него, обладающих высокой долговечностью и термической стабильностью при рабочих температурах выше 900°С в условиях частых теплосмен и при циклических нагружениях.
Техническим результатом изобретения является повышение трещиностойкости, выносливости сплава при малоцикловой усталости при рабочих температурах выше 900°С и сопротивления термической усталости при термоциклировании в интервале температур 100-1100°С.
Технический результат достигается тем, что литейный сплав на основе интерметаллида Ni3Al, содержащий алюминий, хром, вольфрам, молибден, титан, углерод, цирконий, лантан, гафний, тантал и никель, дополнительно содержит кобальт и рений при следующем соотношении компонентов в мас.%:
При этом в качестве технологических примесей сплав может содержать в мас.%: железо, ниобий, марганец не более 0,3 каждого; серу и фосфор не более 0,005 каждого; олово и сурьму не более 0,003 каждого; свинец не более 0,001; висмут не более 0,0005.
Технический результат достигается также в изделии, выполненном из заявленного сплава. Сущность изобретения заключается в следующем.
Известно, что кобальт в литейных сплавах на основе никеля повышает их жаропрочность и пластичность, растворяясь преимущественно в γ-твердом растворе на основе Ni. Однако в сложнолегированных никелевых сплавах, содержащих вольфрам и молибден в суммарном количестве с кобальтом выше 10 мас.%, возможно образование крупных выделений топологически плотно упакованных (ТПУ) фаз типа Co7W6 на когерентных межфазных границах γ'/γ и на границах двух структурных составляющих γ'перв/(γ'+γ)эвтектич, что сильно охрупчивает сплав в условиях воздействия знакопеременных нагрузок при температурах 20-≥900°С и частых теплосмен, поскольку трещины в первую очередь возникают и распространяются по крупным выделениям ТПУ фаз типа Co7W6. Тугоплавкий рений (tпл=3180°С) повышает температуру плавления интерметаллидного сплава, снижает скорость развития диффузионных процессов (как и другие тугоплавкие металлы W, Мо), но в отличие от них не образует с никелем интерметаллидных ТПУ фаз, охрупчивающих сплав. Кроме того, рений занимает позиции Ni (и Со) на когерентной межфазной границе γ'/γ и на границах двух структурных составляющих γ'перв/(γ'+γ)эвтектич, что улучшает прочность когерентных межфазных слоев γ'/γ, оказывает благоприятное воздействие на характеристики прочности и вязкости разрушения межфазной границы γ' Ni3Al/γ Ni, поскольку препятствует выделению ТПУ фаз, образуемых Ni, Со и такими тугоплавкими металлами, как W и Мо. Это в свою очередь оказывает благоприятное воздействие на характеристики пластичности и вязкости разрушения литейных γ'+γ сплавов на основе γ' Ni3Аl, что обеспечивает повышение выносливости и трещиностойкости при работе в условиях знакопеременных нагрузок сплава и термоциклирования.
Совместное введение в сплав с заявленным содержанием компонентов кобальта в количестве 4,0-6,0 мас.% и рения в количестве 1,9-2,6 мас.% создает оптимальное сочетание пластичности и жаропрочности в сплаве, а следовательно, и оптимальное сочетание жаропрочности, трещиностойкости и термической усталости при термоциклировании в интервале температур 100-1100°С. При уменьшении содержания кобальта ниже 4,0 мас.% и увеличении содержания рения выше 2,6 мас.% падает пластичность сплава, что приводит к созданию локальных трещин при высоких температурах, а следовательно, к снижению трещиностойкости и термической усталости. При увеличении содержания кобальта выше 6,0 мас.% и уменьшении содержания рения ниже 1,9 мас.% снижается жаропрочность сплава из-за высокой пластичности, а снижение температуры плавления способствует увеличению локальных трещин при рабочих температурах, что также приводит к снижению трещиностойкости и термической усталости.
Примеры осуществления изобретения.
Шихтовую заготовку из предлагаемого сплава различных составов и известного сплава (патент RU 2351673) выплавляли из чистых шихтовых материалов в вакуумной индукционной печи в тигле с основной футеровкой. После разливки сплавов в кокили D=50 мм отбирали стружку на химический анализ. Результаты химанализа сплавов приведены в таблице 1.
Шихтовую заготовку протачивали по поверхности на глубину 1-2 мм для удаления слоя, контактирующего с тиглем, затем разрезали на мерные заготовки весом по 2 кг для последующего переплава.
Полученные мерные заготовки плавили методом направленной кристаллизации в вакууме 1,5-2,5×10-3 мм рт.ст. с получением образцов D=16 мм и длиной 150 мм и деталей в виде фасонных отливок. Поверхность образцов и деталей контролировалась путем выявления микроструктуры в смеси соляной кислоты и перекиси водорода. При наличии одного макрозерна вдоль оси образца отливка считается монокристаллической, при наличии двух и более зерен без выклинивания - столбчатой структурой.
Свойства предлагаемого сплава с различным соотношением компонентов и известного сплава (по патенту RU 2351673), полученных по одной и той же технологической схеме, приведены в таблице 2.
Из таблицы 2 видно, что свойства предлагаемого сплава на основе интерметаллида Ni3Аl существенно выше, чем известного. Предел выносливости при испытаниях на малоцикловую усталость на базе 104 цикла предполагаемого сплава при 20°С и 900°С выше на 25-27%, чем у известного сплава. Стойкость предлагаемого сплава к термоциклированию от 100 до 1100°С при напряжении Δσ=600 МПа выше, чем у известного сплава в 2,5 раза.
Использование предлагаемого сплава на основе интерметаллида Ni3Al повышает надежность изделий и увеличивает ресурс их работы.
название | год | авторы | номер документа |
---|---|---|---|
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2007 |
|
RU2351673C1 |
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2015 |
|
RU2610577C1 |
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2004 |
|
RU2256716C1 |
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2002 |
|
RU2221890C1 |
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2015 |
|
RU2588949C1 |
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2012 |
|
RU2484167C1 |
ВЫСОКОЖАРОПРОЧНЫЙ ЛИТОЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2016 |
|
RU2629413C1 |
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl | 2010 |
|
RU2434068C1 |
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА (ВАРИАНТЫ) | 2007 |
|
RU2353691C2 |
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА | 2014 |
|
RU2571674C1 |
Изобретение относится к области металлургии, в частности к литейным сплавам на основе интерметаллида Ni3Al и изделиям из них, получаемым методом точного литья по выплавляемым моделям, и может быть использовано для изготовления деталей авиационных газотубинных двигателей. Сплав содержит в мас.%: алюминий 8,0-9,1, хром 5,0-6,5, вольфрам 2,5-3,5, молибден 4,5-5,5, титан 0,3-0,8, углерод 0,001-0,01, цирконий 0,05-0,5, лантан 0,1-0,3, гафний 0,1-0,5, тантал 0,1-1,0, кобальт 4,0-6,0, рений 1,9-2,6, никель и технологические примеси - остальное. В качестве технологических примесей он содержит, в мас.%: железо, ниобий, марганец не более 0,3 каждого; серу и фосфор не более 0,005 каждого; олово и сурьму не более 0,003 каждого; свинец не более 0,001; висмут не более 0,0005. Использование сплава в изделиях повышает их надежность и ресурс работы за счет повышения трещиностойкости, выносливости при малоцикловой усталости при рабочих температурах выше 900°С и повышения сопротивления термической усталости при термоциклировании в интервале температур 100-1100°С. 2 н. и 1 з.п. ф-лы, 2 табл.
1. Литейный сплав на основе интерметаллида Ni3Аl, содержащий алюминий, хром, вольфрам, молибден, титан, углерод, цирконий, лантан, гафний, тантал и никель, отличающийся тем, что он дополнительно содержит кобальт и рений при следующем соотношении компонентов, мас.%:
примеси
2. Сплав по п.1, отличающийся тем, что в качестве технологических примесей он содержит, мас.%: железо, ниобий, марганец не более 0,3 каждого; серу и фосфор не более 0,005 каждого; олово и сурьму не более 0,003 каждого; свинец не более 0,001; висмут не более 0,0005.
3. Изделие из литейного сплава на основе интерметаллида Ni3Al, отличающееся тем, что оно выполнено из сплава по п.1 или 2.
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2007 |
|
RU2351673C1 |
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2002 |
|
RU2221890C1 |
JP 5033091 A, 09.02.1993 | |||
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
2011-11-10—Публикация
2010-10-29—Подача