ВЫСОКОЖАРОПРОЧНЫЙ ЛИТОЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО Российский патент 2017 года по МПК C22C19/05 

Описание патента на изобретение RU2629413C1

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al, которые могут быть использованы для изготовления штампов, применяемых для получения полуфабрикатов из жаропрочных сплавов на никелевой основе методом изотермической деформации, например, дисков газотурбинных двигателей (ГТД).

Известен сплав на основе интерметаллида Ni3Al марки IC-221M следующего химического состава, мас.%:

алюминий 15-17 хром 6-9 молибден 1,5-3,0 цирконий 0,2-1 титан 0,5-1,5 углерод 0,88-2 бор 0,01-0,1 никель остальное (US 6238620 В1, 29.05.2001)

Недостатком сплава являются ограничения по рабочей температуре (1100°С) и низкий предел текучести при этой температуре - σ0,2=100 МПа, что может негативно сказываться на геометрии изготовленных из него инструментов (валков, штампов).

Известен порошковый сплав на основе хрома для изготовления штампов методом горячего изостатического прессования (ГИП) следующего химического состава, мас.%:

молибден 10-40 титан 0,1-1,5 железо 3-15 кислород 0,05-0,5 алюминий 0,5-15 хром остальное (RU 2221892 С1, 20.01.2004)

Недостатком сплава является то, что габариты изготавливаемого из сплава штампа ограничены размерами камеры газостата при проведении ГИП.

Известен сплав на основе никеля ЖСИ-95ДУ, упрочненный карбидами титана и карбидами тантала, следующего химического состава, мас.%:

вольфрам 11,8-12,4 кобальт 9,7-10,3 алюминий 4,9-5,2 хром 8,7-9,6 тантал 0,9-1,1 молибден 1,4-1,6 титан 2,16-2,36 ниобий 1,1-1,4 ванадий 0,2-0,24 гафний 0,03-0,06 цирконий 0,12-0,15 церий 0,01-0,02 бор 0,02-0,04 углерод 0,18-0,26 карбид титана 1,00-1,10 карбид тантала 0,5-0,6 никель остальное (RU 2130088 С1, 10.05.1999)

Недостатком этого сплава являются ограничения по рабочей температуре. Сплав рекомендован для изготовления штамповой оснастки, работающей в изотермических условиях при температурах 900-1000°С, что ограничивает номенклатуру изготовляемых полуфабрикатов.

Известен сплав на основе интерметаллида Ni3Al для изготовления изделий методом точного литья по выплавляемым моделям с поликристаллической структурой следующего химического состава, мас.%:

алюминий 8,3-8,9 хром 4,5-5,2 вольфрам 4,0-4,6 молибден 3,8-4,2 титан 1,2-1,6 кобальт 5,4-6,0 цирконий 0,05-0,50 углерод 0,15-0,20 лантан 0,05-0,25 иттрий 0,01-0,05 никель остальное (RU 2569283 С1, 01.2006)

Недостатком сплава является склонность к хрупкому разрушению в тонких сечениях гравюры штампового инструмента, недостаточная термостойкость и, как следствие, низкий рабочий ресурс штампа.

Наиболее близким аналогом является сплав на основе интерметаллида Ni3Al следующего химического состава, мас.%:

алюминий 8-9 хром 5,0-6,8 вольфрам 2,7-4,0 молибден 3,0-4,3 титан 1,3-2,2 углерод 0,13-0,18 олово 0,03-0,08 никель остальное (RU 2088686 С1, 27.08.1997)

Недостатком сплава-прототипа является ограничение рабочей температуры 1200°С, недостаточная термостойкость и сопротивление окислению на воздухе при температурах 1100 и 1250°С и, соответственно, низкий рабочий ресурс штампа (ограничения по количеству нагружений).

Техническим результатом предлагаемого изобретения является повышение рабочей температуры до 1250°С, улучшение жаростойкости (сопротивление окислению на воздухе) при температурах 1100 и 1250°С, термостойкости и повышение рабочего ресурса до 50 испытаний с усилием 450 МПа при остаточной деформации штампа из сплава на основе интерметаллида Ni3Al не более 0,5%.

Для достижения поставленного технического результата предложен сплав на основе интерметаллида Ni3Al, содержащий алюминий, хром, вольфрам, молибден, титан, углерод и никель, а также кобальт и по меньшей мере один редкоземельный металл (РЗМ), выбранный из группы, содержащей лантан, скандий, иттрий, при следующем соотношении компонентов, мас.%:

алюминий 8,2-8,8 хром 4,5-5,5 вольфрам 4,1-4,6 молибден 4,5-5,5 титан 0,8-1,2 углерод 0,12-0,18 кобальт 3,5-4,5 редкоземельный металл, выбранный из группы, включающей лантан, скандий и иттрий 0,015-0,3 никель остальное

Предпочтительный фазовый состав сплава, мас.%:

γ'-фаза 85-89 γ-фаза 10-14 карбидная фаза 1-1,5

Также предложено изделие, выполненное из вышеуказанного сплава на основе интерметаллида Ni3Al.

Химический и микрорентгеноспектральный анализы показали, что при введении кобальта и РЗМ (лантана и/или скандия и/или иттрия) в заявленном соотношении компонентов в предлагаемом сплаве на основе интерметаллида Ni3Al наблюдается снижение содержания газов, в частности кислорода, и выделение дисперсных частиц типа La3Me и/или Sc3Me, и/или Y3Me по границам зерен и межфазным границам, что в совокупности с повышенным содержанием вольфрама приводит к снижению скорости диффузии элементов сплава при высоких температурах и, как следствие, повышению рабочей температуры, термостойкости и рабочего ресурса штампа до 50 испытаний с усилием 450 МПа при остаточной деформации не более 0,5%. Участие РЗМ с большим атомным радиусом в образовании оксидной пленки на поверхности образца улучшает стойкость к окислению штампового сплава и позволяет использовать его при изотермической штамповке на воздухе.

Понижение концентрации титана и повышение концентрации молибдена, участвующего в твердорастворном упрочнении, благоприятно сказывается на снижении скорости ползучести сплава при температурах 1200-1250°С.

Учитывая принципы твердорастворного и гетерофазного упрочнения жаропрочных сплавов на основе никеля, в процессе приготовления шихты и выплавки композиций фазовый состав сплава желательно контролировать и поддерживать в соотношении 85-89 мас.% упорядоченного твердого раствора на основе Ni3Al (γ'-фаза), 10-14 мас.% неупорядоченного твердого раствора на основе никеля (γ-фаза) и 1-1,5 мас.% карбидной фазы типа МеС и Ме2С.

При легировании сплава принимается во внимание, что в кристаллической решетке Ni3Al атомы легирующих элементов распределяются по-разному: Со, Pd, Pt, Cu преимущественно занимают позиции в никелевой подрешетке, элементы γ'-стабилизаторы (Ti, Zr, Hf, V, Nb, Та, W и Mo) располагаются в алюминиевой подрешетке; Cr, Mn, Fe практически равновероятно замещают позиции как никеля, так и алюминия. Фазово-химический и химический анализы показали, что с учетом замещения позиций Ni и Al в гранецентрированной кубической решетке Ni3Al для поддержания работоспособности сплава при температурах 1200-1250°С формула соединения должна иметь следующий вид - [(Ni0,92Co0,05Cr0,03)3(Al0,68Cr0,13Mo0,11Ti0,05W0,03)]n.

Примеры осуществления изобретения

В вакуумной индукционной печи с тиглем из основной футеровки было выплавлено 3 образца шихтовых заготовок различных составов в кокилях диаметром 90 мм.

После выплавки отбирали стружку образцов на химический анализ. Результаты химического анализа составов сплавов приведены в таблице 1.

Содержание легирующих элементов, газов и примесей, таких как сера, фосфор, железо, висмут, олово, свинец, кремний и сурьма определяли в соответствии с ГОСТ 17745-90; ГОСТ 24018.7-91; МИ 1.2.037-2011; МИ 1.2.054-2013.

После этого шихтовые заготовки протачивали по поверхности на глубину 1-2 мм для удаления слоя, контактировавшего с поверхностью чугунного кокиля, затем методом точного литья по выплавляемым моделям осуществляли их переплав с целью стабилизации химического состава. Полученные слитки с поликристаллической структурой весом по 5,5 кг резали на заготовки под образцы.

Механические свойства полученных слитков из предлагаемого сплава и сплава-прототипа приведены в таблице 2.

Все свойства измерялись по 10 образцам с доверительной вероятностью 0,8.

Термическая стойкость до появления первой трещины длиной 3 мм при термоциклировании: 200↔1200°С со скоростью Vн=Vохл.=1 мин. определялась в соответствии с «Методикой определения термостойкости жаропрочных сплавов», Справочник по авиационным материалам. т. III. 1968.

Сопротивление окислению на воздухе за 100 ч определялось по ГОСТ 6130-71.

Остаточная деформация после 50 циклов при Т=1200°С и σ=450 МПа измерялась по ГОСТ 8817-82.

Из таблицы 2 видно, что свойства предлагаемого сплава на основе интерметаллида Ni3Al выше, чем свойства сплава-прототипа: рабочая температура - на 50°С; термическая стойкость до появления первой трещины длиной 3 мм при термоциклировании: нагрев, охлаждение 200↔1200°С со скоростью Vн=Vохл.=1 мин - на 11-14%; сопротивление окислению на воздухе за 100 ч при температуре 1100°С - на 26,7-40%, при температуре 1250°С - на 6-17,6%; остаточная деформация после 50 циклов нагружения при температуре 1200°С и напряжении 450 МПа - на 50-70%.

Использование предлагаемого сплава на основе интерметаллида Ni3Al для изготовления изделий, в частности штампов для изотермической штамповки, увеличивает ресурс их работы, повышает коэффициент использования металла за счет точности геометрии полуфабрикатов и позволяет обрабатывать новые классы материалов.

Похожие патенты RU2629413C1

название год авторы номер документа
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Базылева Ольга Анатольевна
  • Шестаков Александр Викторович
  • Аргинбаева Эльвира Гайсаевна
  • Туренко Елена Юрьевна
RU2588949C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2007
  • Поварова Кира Борисовна
  • Дроздов Андрей Александрович
  • Казанская Надежда Константиновна
  • Бунтушкин Вячеслав Петрович
  • Базылева Ольга Анатольевна
  • Скачков Олег Александрович
RU2351673C1
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2012
  • Каблов Евгений Николаевич
  • Петрушин Николай Васильевич
  • Оспенникова Ольга Геннадиевна
  • Висик Елена Михайловна
  • Бондаренко Юрий Александрович
  • Хвацкий Константин Константинович
RU2484167C1
Сплав на основе интерметаллида NiAl и изделие, выполненное из него 2022
  • Базылева Ольга Анатольевна
  • Горюнов Александр Валерьевич
  • Моисеев Николай Валентинович
  • Римша Эльвира Гайсаевна
  • Дмитриев Никита Сергеевич
  • Луцкая София Алексеевна
RU2798860C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2010
  • Поварова Кира Борисовна
  • Базылева Ольга Анатольевна
  • Дроздов Андрей Александрович
  • Казанская Надежда Константиновна
  • Морозов Алексей Евгеньевич
  • Самсонова Марина Анатольевна
RU2433196C1
Сплав на основе интерметаллида NiAl, способ его получения и способ изготовления из него изделия 2023
  • Базылева Ольга Анатольевна
  • Битюцкая Ольга Николаевна
  • Римша Эльвира Гайсаевна
  • Артеменко Юлия Вячеславовна
  • Луцкая София Алексеевна
RU2824506C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Поварова Кира Борисовна
  • Базылева Ольга Анатольевна
  • Дроздов Андрей Александрович
  • Аргинбаева Эльвира Гайсаевна
  • Антонова Анна Валерьевна
  • Бондаренко Юрий Александрович
  • Шестаков Александр Викторович
  • Морозов Алексей Евгеньевич
RU2610577C1
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl 2010
  • Базылева Ольга Анатольевна
  • Бондаренко Юрий Александрович
  • Каблов Евгений Николаевич
  • Евгенов Александр Геннадьевич
  • Аргинбаева Эльвира Гайсаевна
  • Нефедов Дмитрий Геннадиевич
  • Сурова Валентина Алексеевна
  • Ечин Александр Борисович
RU2434067C1
ДЕФОРМИРУЕМЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2019
  • Храмин Роман Владимирович
  • Буров Максим Николаевич
  • Логунов Александр Вячеславович
  • Данилов Денис Викторович
  • Лещенко Игорь Алексеевич
  • Заводов Сергей Александрович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Мухтаров Шамиль Хамзаевич
  • Мулюков Радик Рафикович
RU2695097C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ РАБОЧИХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК 2013
  • Лубенец Владимир Платонович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Кац Эдуард Лейбович
  • Кульмизев Александр Евгеньевич
  • Квасницкая Юлия Георгиевна
  • Яковлев Евгений Игоревич
RU2524515C1

Реферат патента 2017 года ВЫСОКОЖАРОПРОЧНЫЙ ЛИТОЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al. Сплав на основе интерметаллида Ni3Al содержит, мас.%: алюминий 8,2-8,8, хром 4,5-5,5, вольфрам 4,1-4,6, молибден 4,5-5,5, титан 0,8-1,2, углерод 0,12-0,18, кобальт 3,5-4,5, по меньшей мере один редкоземельный металл, выбранный из группы, включающей лантан, скандий и иттрий 0,015-0,3, никель - остальное. Сплав характеризуется рабочей температурой до 1250°С, повышенными значениями жаростойкости при температурах 1100 и 1250°С, а также термостойкости. 2 н. и 1 з.п.ф-лы, 2 табл., 3 пр.

Формула изобретения RU 2 629 413 C1

1. Сплав на основе интерметаллида Ni3Al, содержащий алюминий, хром, вольфрам, молибден, титан, углерод и никель, отличающийся тем, что он дополнительно содержит кобальт и по меньшей мере один редкоземельный металл, выбранный из группы, включающей лантан, скандий и иттрий, при следующем соотношении компонентов, мас.%:

алюминий 8,2-8,8 хром 4,5-5,5 вольфрам 4,1-4,6 молибден 4,5-5,5 титан 0,8-1,2 углерод 0,12-0,18 кобальт 3,5-4,5 по меньшей мере один редкоземельный металл, выбранный из группы, включающей лантан, скандий и иттрий 0,015-0,3 никель остальное

2. Сплав по п. 1, отличающийся тем, что он имеет следующий фазовый состав, мас.%:

γ'-фаза 85-89 γ-фаза 10-14 карбидная фаза 1-1,5

3. Изделие из сплава на основе интерметаллида Ni3Al, отличающееся тем, что оно выполнено из сплава по п. 1 или 2.

Документы, цитированные в отчете о поиске Патент 2017 года RU2629413C1

СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl 2010
  • Базылева Ольга Анатольевна
  • Каблов Евгений Николаевич
  • Аргинбаева Эльвира Гайсаевна
  • Туренко Елена Юрьевна
  • Шестаков Александр Викторович
RU2434068C1
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Базылева Ольга Анатольевна
  • Шестаков Александр Викторович
  • Аргинбаева Эльвира Гайсаевна
  • Туренко Елена Юрьевна
RU2588949C1
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2012
  • Каблов Евгений Николаевич
  • Петрушин Николай Васильевич
  • Оспенникова Ольга Геннадиевна
  • Висик Елена Михайловна
  • Бондаренко Юрий Александрович
  • Хвацкий Константин Константинович
RU2484167C1
US 3922168 A, 25.11.1975
JP 2002302725 A, 18.10.2002.

RU 2 629 413 C1

Авторы

Каблов Евгений Николаевич

Базылева Ольга Анатольевна

Туренко Елена Юрьевна

Моисеев Николай Валентинович

Некрасов Борис Романович

Выдумкина Светлана Владимировна

Даты

2017-08-29Публикация

2016-08-04Подача