Изобретение относится к машинам для летнего содержания автомобильных дорог.
Известна поливомоечная машина (см. а.с. №1703773, Мкл. Е01Н 3/02, 1992, бюл. №1), содержащая базовый автомобиль с цистерной, основные сопла, сообщенные с цистерной через водяной насос с пульсатором высокого давления, дополнительные сопла, установленные под основными и связанные с нагнетательной полостью воздушного вентилятора посредством эжектора, эжектирующий вход которого сообщен трубопроводом с цистерной.
Недостатком является высокая энергоемкость при смывании плотнослежавшихся и трудноудаляемых слоев грязи, определяемая необходимостью поддержания высокого давления пульсатора, что требует использования насосов повышенной мощности.
Известна поливомоечная машина (см. патент РФ №2222663, МПК Е01Н 3/02, 2004), содержащая базовый автомобиль с цистерной, основные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет положительное направление вращения винтовой линии, и сообщенные с цистерной через водяной насос с пульсатором высокого давления, дополнительные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет отрицательное направление вращения винтовой линии, установленные над основными соплами и связанные с нагнетательной полостью воздушного вентилятора посредством эжектора, эжектирующий вход которого сообщен трубопроводом с цистерной.
Недостатком является снижение эффективности работы поливомоечной машины в условиях эксплуатации, когда во всасываемом атмосферном воздухе находится большое количество загрязнений в виде мелкодисперсных жидких и твердых частиц продуктов процесса смывания слоев грязи при летнем содержании автомобильных дорог, в результате вентилятором совершается дополнительная работа на перемещение массы этих загрязнений от всасывающей к нагнетательной полости и, соответственно, возрастают энергозатраты.
Технической задачей является поддержание эффективной работы поливомоечной машины при эксплуатации путем снижения энергозатрат при работе воздушного вентилятора за счет очистки всасываемого атмосферного воздуха, загрязненного продуктами смывания слоев грязи, т.е. мелкодисперсными жидкими и твердыми частицами.
Технический результат по снижению энергозатрат достигается тем, что поливомоечная машина содержит базовый автомобиль с цистерной, основные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет положительное направление вращения винтовой линии, и сообщенные с цистерной через водяной насос с пульсаром высокого давления, дополнительные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет отрицательное направление вращения винтовой линии, установленные над основными соплами, и связанные с нагнетательной полостью воздушного вентилятора посредством эжектора, эжектирующий вход которой сообщен с трубопроводом и цистерной, при этом вентилятор снабжен всасывающим патрубком с воздушным фильтром, содержащим корпус с коническим днищем и конденсатоотводчиком, и верхней крышкой, внутри которой размещены перфорированный металлический цилиндр, соединенный с всасывающим патрубком, штуцер ввода очищаемого атмосферного воздуха в виде суживающегося сопла и снабженного съемной металлической сеткой, отражательная перегородка, выполненная пористой со стороны сопла и сплошной со стороны перфорированного металлического цилиндра.
На фиг.1 показана схема поливомоечной машины, на фиг.2 изображена внутренняя поверхность дополнительного сопла с криволинейными направляющими, кривизна которых имеет отрицательное направление вращения винтовой линии, на фиг.3 - внутренняя поверхность основного сопла с криволинейными направляющими, кривизна которых имеет положительное направление вращения винтовой линии, на фиг.4 - воздушный фильтр с всасывающим патрубком вентилятора.
Поливомоечная машина содержит базовый автомобиль 1, на котором установлена цистерна 2, соединенная водяным насосом 3. На автомобиле 1 смонтирован вентилятор 4. насос 3 соединен трубопроводом 5 с пульсатором высокого давления 6, который связан с основными соплами 7, а вентилятор 4 с трубопроводом 8 соединены с эжектором 9, к которому подключены дополнительные сопла 10, расположенные над основными соплами 7. К эжектирующему входу эжектора 9 подключена через трубопровод 11 цистерна 2. На внутренней поверхности основного сопла 7 выполнены направляющие 12, кривизна которых имеет положительное направление вращения винтовой линии, а на внутренней поверхности дополнительного сопла выполнены направляющие 13, кривизна которых имеет отрицательное направление вращения винтовой линии. Вентилятор 4 снабжен всасывающим патрубком 14 с воздушным фильтром 15, содержащим корпус 16 с коническим днищем 17 и конденсатоотводчиком 18, и верхней крышкой 19, внутри которого размещены перфорированный металлический цилиндр 20, соединенный с всасывающим патрубком 14, штуцер ввода очищаемого атмосферного воздуха в виде суживающегося сопла 21 и снабженного съемной металлической сеткой 22, отражательная перегородка 23, выполненная с порами 24 со стороны сопла 21 и сплошной 25 со стороны перфорированного металлического цилиндра 20.
Поливомоечная машина работает следующим образом.
При смывании легкоудаляемых пылевидных загрязнений дорожных покрытий в окружающей поливомоечную машину среде находится значительное количество твердых пылевидных частиц и множество мелкодисперсной каплеобразной жидкости и данная смесь при включении вентилятора 4 перемещается в сторону штуцера ввода 21. Наиболее крупные частицы загрязнений всасываемого атмосферного воздуха контактируют со съемной металлической сеткой 22 и спадают в окружающую среду, а остальные частицы с потоком воздуха перемещаются по суживающемуся соплу 21 в виде которого выполнен штуцер ввода, увеличивая скорость за счет уменьшения проходного сечения и на выходе резко расширяется с некоторым снижением температуры относительно окружающей среды - эффект Джоуля-Томпсона (см., например, стр.199 Нащокин В.В. Техническая термодинамика и теплопередача. М.: 1980 - 469 с., ил.). В результате наблюдаются дополнительная конденсация паров и коагуляция мелкодисперсной влаги, после чего данная смесь ударяется об отражательную перегородку 23, образуя на ней пятно жидкости, которая частично проникает в поры 24, где задерживается сплошной стороной 25 и частично стекает в коническое днище 17 для накапливания до определенного уровня и через конденсатоотводчик 18 удаляется в окружающую среду. Теплота энергии удара потока всасываемого атмосферного воздуха испаряет «пятно» жидкости на отражательной перегородке 23, что еще несколько снижает его температуру и охлажденный, очищенный от пыли и влаги поток огибает отражательную перегородку 23 и через перфорированный металлический цилиндр 20, всасывающий патрубок 14 поступает в вентилятор 4. В результате на привод вентилятора 4 расходуются минимальные энергозатраты, обусловленные необходимостью сжатия и перемещения массы лишь атмосферного всасываемого воздуха, а не сопутствующей с ним массы загрязнений в виде пыли и капельной жидкости, что дает экономию от 15 до 25% (см., например, Курчавин В.И. Экономия тепловой и электрической энергии в поршневых компрессорах. Л.: Энергоиздат, 1985 - 237 с., ил.) электроэнергии в зависимости от производительности вентиляторной установки. Из вентилятора 4 очищенный воздух по трубопроводу 8 поступает в эжектор 9. Одновременно самотеком под действием давления, создаваемого столбом воды, находящимся в цистерне 2, по трубопроводу 11 загрязненная твердыми частицами жидкость поступает в камеру смешивания эжектора 9 и полученная водовоздушная масса направляется в дополнительное сопло 10, где перемещается по криволинейным направляющим 13, кривизна которых имеет отрицательное направление вращения винтовой линии. В этом случае через дополнительное сопло 10 выбрасывается водовоздушная масса с твердыми загрязнениями потоком в виде закрученных по часовой стрелке винтообразных струй под заданным углом к дорожному покрытию.
Известно, что вихреобразно закрученный движущийся поток обладает большей кинетической энергией, чем поток в виде прямоточных струй, поэтому при встрече вихреобразно закрученной струи с дорожным покрытием происходят более эффективное отделение загрязнений, смывание их и перемещение по направлению к прилотковой полосе. Вихреобразное движение водовоздушной смеси приводит к смешению более плотной ее компоненты к периферии. Следовательно, вода, как обладающая большей плотностью, чем воздух, преимущественно является завесой, обеспечивающей пылеподавление, и в пределах ширины мойки на дорожном покрытии практически не остается слоя воды.
При смывании плотно слежавшихся слоев и трудно удаляемых слоев грязи на дорожном покрытии одновременно с подачей водовоздушной струи осуществляется включение насоса 3 и дополнительная вода из цистерны 2 по трубопроводу 11 с твердыми загрязнениями через насос 3 и трубопровод 5 поступает в пульсатор 6, из которого вода в виде импульсов, величина которых определяется видом смываемых загрязнений, при давлении 1,1-1,6 МПа направляется в основное сопло 7. В результате через основное сопло 7 выбрасывается вторая высоко напорная струя с твердыми частицами ржавчины и окалины, закрученная (завихренная) против часовой стрелки и имеющая большую кинетическую энергию по отношению к струе, выбрасываемой из дополнительного сопла 10 и соответствующий меньший угол наклона. Высоконапорный импульсно выбрасываемый из основного сопла 7 закрученный поток воды позволяет размыть и удалить загрязнения, а также с высокой степенью чистоты вымыть их из пор и трещин асфальтного покрытия.
Брызги грязи, образующиеся при размывке слоя загрязнений, не разлетаются в стороны, так как гасятся за счет контакта закрученных по часовой стрелке водовоздушных струй (вследствие перемещения их по криволинейным направляющим 13, кривизна которых имеет отрицательное направление вращения винтовой линии), выбрасываемых из дополнительных сопел 10, и закрученных против часовой стрелки высоконапорных импульсно движущихся струй воды (вследствие перемещения их после пульсара по криволинейным направляющим 12, кривизна которых имеет положительное направление вращения винтовой линии), выбрасываемых из основных сопел 7. При этом водовоздушная струя, являясь завесой над высоконапорной пульсирующей струей воды, создает микрозавихрения для твердых частиц пыли, постоянно витающих в атмосферном воздухе, и в том числе в зоне моющих секторов, принуждая пыль к осаждению, что в конечном итоге приводит к улучшению экологических параметров в пределах ширины мойки на дорожном покрытии со снижением энергоемкости работы поливомоечной машины.
Оригинальность предлагаемого технического решения заключается в том, что оно позволяет поддерживать эффективность смывания различных загрязнений на дорожном покрытии со снижением энергозатрат в процессе длительной эксплуатации поливомоечной машины путем устранения возможности поступления загрязнений в виде пыли и жидких мелкодисперсных частиц, поступающих с всасываемым атмосферным воздухом в вентилятор, что приводило к дополнительным энергозатратам на его привод и в конечном итоге повышало энергоемкость работы поливомоечной машины.
название | год | авторы | номер документа |
---|---|---|---|
ПОЛИВОМОЕЧНАЯ МАШИНА | 2015 |
|
RU2604598C1 |
ПОЛИВОМОЕЧНАЯ МАШИНА | 2008 |
|
RU2385381C1 |
ПОЛИВОМОЕЧНАЯ МАШИНА | 2002 |
|
RU2222663C2 |
ПОЛИВООРОСИТЕЛЬНАЯ МАШИНА НА БАЗЕ КАРЬЕРНОГО САМОСВАЛА С КУЗОВОМ ДЛЯ ПЕРЕВОЗКИ НАВАЛОЧНЫХ ГРУЗОВ | 2021 |
|
RU2771758C1 |
Фильтр для очистки воздуха | 2016 |
|
RU2641824C1 |
ФИЛЬТР ДЛЯ ОЧИСТКИ ВОЗДУХА | 2008 |
|
RU2367503C1 |
ФИЛЬТР ДЛЯ ОЧИСТКИ ВОЗДУХА | 2001 |
|
RU2291737C2 |
ФИЛЬТР ДЛЯ ОЧИСТКИ ВОЗДУХА | 2015 |
|
RU2593292C1 |
Поливо-моечная машина | 1989 |
|
SU1703773A1 |
ФИЛЬТР ДЛЯ ОЧИСТКИ ВОЗДУХА | 1993 |
|
RU2050945C1 |
Изобретение относится к машинам для летнего содержания автомобильных дорог. Машина содержит базовый автомобиль с цистерной, основные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет положительное направление вращения винтовой линии и сообщенные с цистерной через водяной насос с пульсаром высокого давления. Дополнительные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет отрицательное направление вращения винтовой линии, установленные над основными соплами, и связанные с нагнетательной полостью воздушного вентилятора посредством эжектора, эжектирующий вход которой сообщен с трубопроводом и цистерной. Вентилятор снабжен всасывающим патрубком с воздушным фильтром, содержащим корпус с коническим днищем и конденсатоотводчиком, и верхней крышкой, внутри которой размещены перфорированный металлический цилиндр, соединенный с всасывающим патрубком, штуцер ввода очищаемого атмосферного воздуха в виде суживающегося сопла, снабженного съемной металлической сеткой, отражательная перегородка, выполненная пористой со стороны сопла и сплошной со стороны перфорированного металлического цилиндра. Обеспечивается поддержание эффективной работы поливомоечной машины при эксплуатации. 4 ил.
Поливомоечная машина, содержащая базовый автомобиль с цистерной, основные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет положительное направление вращения винтовой линии, и сообщенные с цистерной через водяной насос с пульсаром высокого давления дополнительные сопла, на внутренней поверхности которых расположены криволинейные направляющие, кривизна которых имеет отрицательное направление вращения винтовой линии, установленные над основными соплами и связанные с нагнетательной полостью воздушного вентилятора посредством эжектора, эжектирующий вход которой сообщен с трубопроводом и цистерной, отличающаяся тем, что вентилятор снабжен всасывающим патрубком с воздушным фильтром, содержащим корпус с коническим днищем и конденсатоотводчиком, и верхней крышкой, внутри которой размещены перфорированный металлический цилиндр, соединенный с всасывающим патрубком, штуцер ввода очищаемого атмосферного воздуха в виде суживающегося сопла и снабженного съемной металлической сеткой, отражательная перегородка, выполненная пористой со стороны сопла и сплошной со стороны перфорированного металлического цилиндра.
ПОЛИВОМОЕЧНАЯ МАШИНА | 2002 |
|
RU2222663C2 |
Поливо-моечная машина | 1989 |
|
SU1703773A1 |
Способ изготовления цементных, гипсовых и цементно-гипсовых моделей и форм для изготовления их | 1931 |
|
SU31584A1 |
Воздухораспределитель | 1983 |
|
SU1147899A1 |
Потенциальный зонд для измерения типа проводимости полупроводниковых материалов | 1961 |
|
SU150176A1 |
Авторы
Даты
2011-11-27—Публикация
2010-03-29—Подача