Изобретение относится к нефтяной и газовой промышленностям, в частности к строительству нефтяных и газовых скважин, и может быть использовано при изготовлении тампонажных растворов, предназначенных для крепления скважин.
Известны тампонажные материалы, содержащие цемент, пластификатор и пеногаситель (Булатов А.И., Данюшевский B.C. Тампонажные материалы. М., Недра, 1987, с.196; Данюшевский B.C., Алиев P.M., Толстых И.Ф. Справочное руководство по тампонажным материалам, М., Недра, 1987, с.203).
Известен расширяющийся тампонажный раствор, содержащий цемент, водно-солевой раствор и пластифицирующую и уплотняющую добавку, в качестве которой используют 15%-ный раствор лигносульфоната (патент России №2222688, Е21 В 33/138, 2004).
Недостатком данного тампонажного раствора является низкая адгезионная способность и прочность раствора.
Известен тампонажный раствор (патент России №2337124, Е21В 33/138, 2000), содержащий цемент, полиамидное волокно или смесь полиамидного волокна с хризотил-асбестом, суперпластификатор, окси-этилцеллюлозу и ускоритель.
Недостатком данного раствора является усадка цементного камня при схватывании и твердении, что приводит к ухудшению качества цементирования скважин.
В качестве ближайшего аналога заявляемому техническому решению выбран тампонажный раствор по патенту 2297437 (опубл. 20.04.2007), содержащий цемент, пластификатор, пеногаситель, полимерную добавку и воду, и в котором в качестве полимерной добавки использован повторно диспергируемый латексный порошок, в качестве пластификатора - сульфированный меламинформальдегид, в качестве пеногасителя - кремнийорганическая композиция на подложке из двуокиси кремния и дополнительно гидроксиэтилцеллюлозу.
Недостатком данного раствора является усадка цементного камня при схватывании и твердении, что приводит к ухудшению качества цементирования скважин.
В настоящее время в цементировании продуктивных интервалов нефтяных скважин существует две серьезных проблемы:
1) низкое качество сцепления цементного камня с породой и обсадной колонной;
2) низкая трещиностойкость используемого цементного камня.
Как известно, портланд цементы схватываются и твердеют с общим уменьшением объема. В строительстве данная проблема решается введением инертных наполнителей и заполнителей. В нефтяной промышленности данное решение зачастую неприемлемо, поскольку введение материалов другого фракционного состава крайне отрицательно скажется на проникающей способности цемента. Отчасти, данная проблема решена на уровне цементных заводов, где состав цементного клинкера подобран таким образом, чтобы максимально снизить усадку цемента при твердении. Другим путем решением является введение в состав цемента специальных добавок, которые, взаимодействуя с минералами цемента, вызывают общее увеличение (расширение) цементного камня. Низкая трещиностойкость цементов крайне негативно сказывается на дальнейшей работе скважины.
Процесс строительства скважин состоит из трех этапов: бурение, цементирование, освоение. На стадии освоения необходимо осуществить сообщение между скважиной и продуктивным пластом. Для этого обсадную колонну и цемент, заполняющий межкольцевое пространство, "простреливают" (в дальнейшем через эти отверстия нефть из пласта будет поступать в скважину). В этот момент цемент испытывает огромные ударные нагрузки, в результате которых происходит растрескивание цементного камня вдоль ствола скважины. По образовавшимся трещинам в нефтяной пласт может попасть вода из верхних водоносных слоев (заколонные перетоки). В лучшем случае будет значительное обводнение добываемой нефти, в худшем (если давление водяного пласта превышает давление нефтеносного пласта) скважина окажется не работоспособной, т.к. нефть будет задавлена вглубь пласта водой. Увеличение трещиностойкости решается введением в состав цемента армирующих добавок (волокон органического и неорганического происхождения). В данном составе были решены обе вышеуказанные проблемы. На момент подачи заявки не выявлены армированные расширяющиеся цементные составы.
Технической задачей предлагаемого изобретения является улучшение эксплуатационных характеристик тампонажного раствора, повышение активности расширяющего компонента, повышающего адгезионные свойства тампонажного камня, снижиющего его деформационные свойства в широком диапазоне температур, в частности получение плотного контакта цемента с породой и обсадной колонной, а также трещиностойкость цемента.
Технический результат достигается тем, что в тампонажном растворе, содержащем цемент, гидроксиэтилцеллюлозу, пластификатор, пеногаситель, синтетические (акриловые, полиамидные, полипропиленовые) волокна диаметром 0.001-0.1 мм и длиной 0.1-20 мм, вводят расширяющую добавку.
В качестве цемента используются портландцемента тампонажные по ГОСТ 1581-96.
В качестве расширяющей добавки используется:
оксид магния (каустический магнезит, ГОСТ 1216-87);
гипсо-глиноземистый расширяющийся цемент (смесь глиноземистого цемента с гипсом, ГОСТ 11052);
реагент РУ - расширяющая добавка, представляющая собой смесь модифицированных сульфатов кальция и алюминия (сульфоалюминат кальция), ТУ 2157-034-40912231-2005;
реагент РУ М марок А, Б, В - расширяющая добавка на основе модифицированных оксидов кальция, магния, алюминия и сульфатов кальция и алюминия, ТУ 2458-059-40912231-2009;
расширяющая добавка на основе оксида кальция - невзрывчатая разрушающая смесь НРС-1М, ТУ 5744-001-82475767-08, и аналогичные ей по составу (расширяющаяся тампонажная добавка ДР-100, ДР-50, ДР-20, ТУ 5744-002-59758749-06, смесь известковая для горных работ СИГБ, ТУ 5744-002-00282369-00). В качестве пластификатора используются сухой сульфированный меламинформальдегид (Цемпласт МФ марки А, ТУ 2223-011-40912231-2003, Peramin SMF-10, имп.).
В качестве пеногасителя - кремнийорганическая композиция на подложке из двуокиси кремния (Полицем ДФ, ТУ 2228-010-40912231-2003, Axilat DF770DD, имп).
Компоненты предлагаемого раствора используются при следующем соотношении, мас.ч:
Выбор расширяющей добавки зависит от интервала температур, в которых будет использоваться указанный тампонажный раствор.
В таблице 1 указаны температурные интервалы для использованных расширяющих добавок.
Экспериментально установлено, что введение расширяющих добавок в раствор тампонажного цемента позволяет полностью компенсировать усадку цементного камня при схватывании и твердении, чем достигается более плотный контакт цемента с породой и обсадной колонной.
Экспериментально установлено оптимальное процентное соотношение входящих в состав тампонажного раствора ингридиентов - гидроксиэтилцеллюлозы, пластификатора, пеногасителя и волокон при использовании расширяющих добавок.
Данные экспериментальных исследований приведены в таблицах.
В таблице 1 приведены соотношения между температурным интервалом применения и используемой расширяющей добавкой.
Таблица 1
В таблице 2 приведены данные о составах испытуемых растворов.
В качестве состава сравнения был выбран тампонажный состав по патенту 2297437 следующего состава:
В таблице 3 приведены данные о свойствах испытуемых растворов, выявленных в процессе эксперимента.
Таким образом, как видно из приведенных таблиц, предлагаемое изобретение позволяет улучшить эксплуатационные характеристики тампонажного раствора. В частности, увеличить прочность камня на изгиб. Кроме того, в процессе испытаний был отмечен тот факт, что армирование значительно уменьшает развитие трещин. Так после проведения испытания на сжатие контрольный образец разрушался на отдельные не связанные фрагменты, в то время как разрушение армированных цементов, хотя и происходило, но фрагменты образца оставались связанными между собой синтетическими волокнами.
Благодаря заявленному техническому решению повышено качество тампонажного камня за счет регулирования его физико-механических свойств при сжатии, изгибе, растяжении (разрыве), ударной вязкости и адгезионных свойств.
меламинформальдегид (пластификатор)
название | год | авторы | номер документа |
---|---|---|---|
ТАМПОНАЖНЫЙ МАТЕРИАЛ ДЛЯ УСТАНОВКИ МОСТОВ В СКВАЖИНЕ, ПРОБУРЕННОЙ НА ИНВЕРТНО-ЭМУЛЬСИОННОМ БУРОВОМ РАСТВОРЕ (ВАРИАНТЫ) | 2013 |
|
RU2525408C1 |
ТАМПОНАЖНЫЙ СОСТАВ ДЛЯ ЦЕМЕНТИРОВАНИЯ ГОРИЗОНТАЛЬНЫХ СТВОЛОВ СКВАЖИН | 2012 |
|
RU2508307C2 |
РАСШИРЯЮЩИЙСЯ ТАМПОНАЖНЫЙ МАТЕРИАЛ | 2007 |
|
RU2360940C1 |
ТАМПОНАЖНЫЙ МАТЕРИАЛ ДЛЯ ЦЕМЕНТИРОВАНИЯ СКВАЖИН С БОЛЬШИМ ГАЗОВЫМ ФАКТОРОМ | 2011 |
|
RU2447123C1 |
ОБЛЕГЧЕННЫЙ ГАЗОБЛОКИРУЮЩИЙ ТАМПОНАЖНЫЙ МАТЕРИАЛ ДЛЯ ЦЕМЕНТИРОВАНИЯ НАДПРОДУКТИВНЫХ ИНТЕРВАЛОВ (ВАРИАНТЫ) | 2012 |
|
RU2497861C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ ОБЛЕГЧЕННОГО ТАМПОНАЖНОГО РАСТВОРА ПЛОТНОСТЬЮ 1450-1500 кг/м | 2008 |
|
RU2385894C1 |
ФИБРОАРМИРОВАННЫЙ ТАМПОНАЖНЫЙ МАТЕРИАЛ ДЛЯ ЦЕМЕНТИРОВАНИЯ ПРОДУКТИВНЫХ ИНТЕРВАЛОВ, ПОДВЕРЖЕННЫХ ПЕРФОРАЦИИ В ПРОЦЕССЕ ОСВОЕНИЯ СКВАЖИН | 2011 |
|
RU2458962C1 |
БАЗОВАЯ ОСНОВА ТАМПОНАЖНОГО РАСТВОРА ДЛЯ ЦЕМЕНТИРОВАНИЯ СКВАЖИН | 2007 |
|
RU2337124C1 |
ТАМПОНАЖНЫЙ СОСТАВ ДЛЯ ПАРОНАГНЕТАТЕЛЬНЫХ СКВАЖИН | 2007 |
|
RU2359988C1 |
Сухая смесь для приготовления расширяющегося тампонажного раствора | 2019 |
|
RU2710943C1 |
Изобретение относится к нефтяной и газовой промышленностям, в частности к строительству нефтяных и газовых скважин, и может быть использовано при изготовлении тампонажных растворов, предназначенных для крепления скважин. Тампонажный раствор содержит цемент, гидроксиэтилцеллюлозу, пластификатор, пеногаситель и дополнительно синтетические волокна диаметром 0,001-0,1 длиной 1-20 мм, расширяющую добавку при следующем соотношении, мас.ч: цемент - 100; гидроксиэтилцеллюлоза - 0,2-0,4; пластификатор - 0,1-0,5; пеногаситель - 0,2; синтетические волокна - 0,1-4; расширяющая добавка - 0,1-20; вода - 49-51. Технический результат - увеличение площади полного контакта затвердевшего тампонажного раствора с породой и обсадной колонной. 3 табл.
Тампонажный раствор, содержащий цемент, гидроксиэтилцеллюлозу, пластификатор, пеногаситель, отличающийся тем, что дополнительно содержит синтетические волокна диаметром 0,001-0,1, длиной 1-20 мм, расширяющую добавку при следующем соотношении, мас.ч:
ТАМПОНАЖНЫЙ РАСТВОР (ВАРИАНТЫ) | 2005 |
|
RU2297437C1 |
БАЗОВАЯ ОСНОВА ТАМПОНАЖНОГО РАСТВОРА ДЛЯ ЦЕМЕНТИРОВАНИЯ СКВАЖИН | 2007 |
|
RU2337124C1 |
РАСШИРЯЮЩИЙСЯ ТАМПОНАЖНЫЙ МАТЕРИАЛ | 2007 |
|
RU2360940C1 |
DE 4210224 А, 27.05.1993. |
Авторы
Даты
2012-02-10—Публикация
2010-12-24—Подача