СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ СУБМОДУЛЬ Российский патент 2012 года по МПК H01L31/52 

Описание патента на изобретение RU2442244C1

Изобретение относится к солнечной энергетике, в частности к конструкции солнечного фотоэлектрического субмодуля, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую.

Известен солнечный фотоэлектрический субмодуль (см. патент RU 2382952, МПК F24J 2/08, опубликован 27.02.2010), включающий концентратор солнечного излучения, фотоэлемент, металлический теплоотводящий лоток с плоским дном, на внутренней поверхности которого установлен фотоэлемент. Металлическое теплоотводящее основание (лоток) является одним из электрических контактов фотоэлемента. Вторым контактом является верхнее металлическое покрытие фольгированного стеклотекстолита, закрепленного на теплоотводящем основании, к которому подведен ленточный контакт, присоединенный другим концом к контактной сетке фотоэлемента.

Недостатком данного солнечного фотоэлектрического модуля является затенение фоточувствительной области солнечного элемента полосками контактной сетки, что приводит к возникновению оптических потерь и уменьшению КПД преобразования солнечной энергии.

Известен солнечный фотоэлектрический субмодуль (см. патент RU 3207294, МПК F24J 2/08, H01L 31/052, опубликован 20.04.2004), содержащий концентратор солнечного излучения, солнечный фотоэлемент, металлическое теплоотводящее основание, на фронтальной поверхности которого установлен солнечный фотоэлемент. Металлическое теплоотводящее основание также является и одним из электрических контактов солнечного фотоэлемента. Вторым контактом является верхнее металлическое покрытие фольгированного стеклотекстолита, закрепленного на теплоотводящем основании, к которому подведен проволочный контакт, присоединенный другим концом к контактной сетке фотоэлемента. Коммутация солнечных фотоэлементов осуществляется через контакты, прикрепленные к металлическому основанию и верхнему металлическому покрытию стеклотекстолита.

Известен солнечный фотоэлектрический субмодуль (см. заявка US 20100132793, МПК H01L 31/00, опубликована 03.06.2010), включающий концентраторный солнечный элемент, подложку, на которой расположен солнечный элемент. Субмодуль содержит систему, закрывающую и защищающую солнечный элемент, расположенную на подложке, концентратор солнечного излучения. На фронтальной фоточувствительной поверхности солнечного элемента выполнены контактные полоски.

Недостатком известного солнечного фотоэлектрического субмодуля является недостаточный КПД преобразования солнечного излучения в электроэнергию из-за затенения фоточувствительной поверхности солнечного элемента контактными полосками.

Наиболее близким к заявляемому техническому решению по совокупности существенных признаков является солнечный фотоэлектрический субмодуль (см. заявка РСТ WO 2010027018, МПК H01L 31/042; H01L 31/042, опубликован 11.03.2010), принятый за прототип. Субмодуль-прототип включает концентратор солнечного излучения и фотоэлемент с контактными полосками на фронтальной фоточувствительной поверхности фотоэлемента, закрепленный на подложке с теплоотводом.

В известном субмодуле для снижения омических потерь при повышенных рабочих токах уменьшают расстояние между контактными полосами. Однако такое техническое решение приводит к увеличению оптических потерь, вследствие увеличения затенения фоточувствительной поверхности фотоэлемента контактными полосками, что, в свою очередь, приводит к снижению КПД фотоэлемента. Для снижения оптических потерь уменьшают также ширину контактных полосок, но это приводит к увеличению контактного сопротивления между металлическими контактными полосками и полупроводниковой структурой, что, в свою очередь, также снижает КПД солнечного фотоэлемента.

Задачей заявляемого технического решения является разработка солнечного фотоэлектрического субмодуля с улучшенными параметрами за счет уменьшения потерь, связанных с затенением светочувствительной поверхности фотоэлемента.

Поставленная задача достигается тем, что в солнечном фотоэлектрическом субмодуле, включающем концентратор солнечного излучения и фотоэлемент с контактными полосками на фронтальной фоточувствительной поверхности фотоэлемента, контактные полоски имеют в поперечном сечении вид трапеции с большим тыльным основанием, прилегающим к фронтальной поверхности фотоэлемента, боковые поверхности контактных полосок выполнены зеркальными, ширина W1 тыльного основания контактных полосок, ширина W2 верхней (фронтальной) поверхности контактных полосок и угол α между боковой поверхностью и тыльным основанием контактных полосок удовлетворяют соотношениям:

W1=(0,05-0,1)l, мкм;

где l - расстояние между соседними контактными полосами,

2 мкм<W2<0,3·W1, мкм;

,

где h - высота контактных полосок, мкм,

D - размер апертуры концентратора, мкм,

F - фокусное расстояние концентратора, мкм.

Солнечный фотоэлектрический субмодуль предназначен для работы при высоких степенях концентрирования солнечного излучения более 500 крат. В этих условиях плотности фототока превышают 10 А/см2, что приводит в известных конструкциях солнечных элементов к увеличению омических потерь при протекании фототока от области генерации фотоносителей к токосборным контактным полосам и, как следствие этого, к снижению КПД фотоэлементов.

Условие обеспечивает выполнение требования попадания на фоточувствительную поверхность лучей, распространяющихся к фотоэлементу от концентратора и отражающихся от боковых поверхностей контактных полосок. При этом условие обеспечивает выполнение данного требования для лучей, падающих перпендикулярно поверхности фотоэлемента. Экспериментально найденные оптимальные величины соотношения дают величину данного ограничения α>49°-53°. Условие - обеспечивает выполнение данного требования для всех лучей, собираемых концентратором с размером апертуры D и фокусным расстоянием F. Большее же значение угла приводит к увеличению доли лучей, попадающих на фронтальную верхнюю поверхность контактной полоски шириной W2, т.к. при этом увеличивается соотношение W2/W1.

Экспериментально найденное оптимальное соотношение для концентраторов, например линз Френеля, составляет 0,25, что соответствует значению угла α2≈15°. Таким образом, угол α, соответствующий оптимальным значениям соотношений и , находится в диапазоне 49°-53°<α<60°.

Экспериментально найденное оптимальное расстояние между контактными полосами l=80 мкм, ширина тыльной поверхности контактных полосок W1=8 мкм, отношение , ширина фронтальной верхней поверхности контактных полосок W2=2 мкм при высоте контактной полоски h=6 мкм, отношение , а угол α>49°.

Заявляемое техническое решение поясняется чертежами, где:

на фиг.1 приведено схематическое изображение солнечного фотоэлектрического субмодуля;

на фиг.2 показано схематическое изображение части солнечного фотоэлектрического субмодуля;

на фиг.3 приведена схема падения и отражения лучей от концентратора на контактные полоски;

на фиг.4 изображена фотография маски фоторезиста.

На фиг 1 обозначены: 1 - концентратор солнечного излучения, 2 - фотоэлемент, 3 - контактные полоски, 4 - фронтальная фоточувствительная поверхность фотоэлемента, 5 - боковые поверхности контактных полосок, 6-9 - направление лучей солнечного излучения, 10 - маска фоторезиста.

Заявляемая конструкция солнечного фотоэлектрического субмодуля (см. фиг.1, фиг.2) включает концентратор солнечного излучения 1 и фотоэлемент 2 с контактными полосками 3 на фронтальной фоточувствительной поверхности 4 фотоэлемента 2. Контактные полоски 3 выполнены в поперечном сечении в виде трапеции с зеркальными боковыми поверхностями 5, тыльным основанием шириной W1, прилегающим к фронтальной фоточувствительной поверхности 4, верхней (фронтальной) поверхностью шириной W2 (см. фиг.3). Контактные полоски 3 выполнены на расстоянии l друг от друга. Угол α между боковой поверхностью 5 и тыльным основанием контактных полосок 3 выполнен равным . Лучи 6 и 7 от концентратора 1 падают на зеркальную боковую поверхность 5 контактных полосок 3, отражаются соответственно в лучи 8 и 9 и падают на фронтальную фоточувствительную поверхность 4 фотоэлемента 2. Конструкция выполнена таким образом, чтобы лучи, отраженные от зеркальной боковой поверхности 5 контактных полосок 3, не отразились обратно в воздушное пространство, и не попали на соседнюю контактную полоску 3. Контактные полоски 3 создают, например, методом электрохимического осаждения серебра через маску 10 фоторезиста (см. фиг.4). Полоски маски 10 фоторезиста были созданы в поперечном сечении в виде трапеции с меньшим тыльным основанием, прилегающим к фронтальной поверхности 4 фотоэлемента 2, и с большим верхним основанием. Серебро, благодаря высоким пластичным свойствам, точно повторяет профиль маски фоторезиста, таким образом, контактные полоски имеют в поперечном сечении вид трапеции с большим основанием, обращенным к фронтальной фоточувствительной поверхности 4 фотоэлемента 2.

Пример 1. Был изготовлен солнечный фотоэлектрический субмодуль, включающий концентратор солнечного излучения и фотоэлемент с контактными полосками на фронтальной фоточувствительной поверхности фотоэлемента. Контактные полоски выполнены в поперечном сечении в виде трапеции с зеркальными боковыми поверхностями методом электрохимического осаждения серебра через маску фоторезиста. Полоски маски фоторезиста были созданы в поперечном сечении в виде трапеции с узким тыльным основанием, прилегающим к фронтальной поверхности фотоэлемента, и с широким верхним основанием. Контактные полоски имели в поперечном сечении вид трапеции с большим тыльным основанием шириной W1=8 мкм, прилегающим к фронтальной поверхности фотоэлемента, и с фронтальной поверхностью шириной W2=2 мкм Контактные полоски были выполнены на расстоянии l=80 мкм друг от друга. Высота контактных полосок h=6 мкм. Угол α между боковой поверхностью и тыльным основанием контактной полоски был равен 60°.

Пример 2. Был изготовлен фотоэлектрический субмодуль, включающий концентратор солнечного излучения и фотоэлемент с контактными полосками на фронтальной фоточувствительной поверхности фотоэлемента. Контактные полоски были выполнены в поперечном сечении в виде трапеции с зеркальными боковыми поверхностями методом электрохимического осаждения серебра через маску фоторезиста. Полоски маски фоторезиста имели в поперечном сечении вид трапеции с меньшим тыльным основанием, прилегающим к фронтальной поверхности фотоэлемента, и с большим верхним основанием. Контактные полоски имели в поперечном сечении вид трапеции с тыльным основанием шириной W1=5 мкм, прилегающим к фронтальной поверхности фотоэлемента, и с фронтальной поверхностью шириной W2=2. Контактные полоски выполнены на расстоянии l=60 мкм друг от друга. Высота контактных полосок h=2 мкм. Угол α между боковой поверхностью и тыльным основанием контактной полоски был равен 53°.

Пример 3. Был изготовлен фотоэлектрический субмодуль, включающий концентратор солнечного излучения и фотоэлемент с контактными полосами на фронтальной фоточувствительной поверхности фотоэлемента. Контактные полоски были выполнены в поперечном сечении в виде трапеции с зеркальными боковыми поверхностями методом электрохимического осаждения серебра через маску фоторезиста. Полоски маски фоторезиста имели в поперечном сечении вид трапеции с меньшим тыльным основанием, прилегающим к фронтальной поверхности фотоэлемента, и с большим верхним основанием. Контактные полоски имели в поперечном сечении вид трапеции с большим тыльным основанием шириной W1=12 мкм, прилегающим к фронтальной поверхности фотоэлемента, и с фронтальной поверхностью шириной W2=4 мкм. Контактные полоски были выполнены на расстоянии l=120 мкм друг от друга. Высота контактных полосок h=6 мкм. Угол α между боковой поверхностью и тыльным основанием контактной полоски был равен 56°.

Пример 4. Был изготовлен фотоэлектрический субмодуль, включающий концентратор солнечного излучения и фотоэлемент с контактными полосами на фронтальной фоточувствительной поверхности фотоэлемента. Контактные полосы выполнены в сечении в виде пирамид с зеркальными боковыми поверхностями методом электрохимического осаждения серебра через маску фоторезиста. Полоски маски фоторезиста имели в поперечном сечении вид трапеции с меньшим тыльным основанием, прилегающим к фронтальной поверхности фотоэлемента, и с большим верхним основанием. Контактные полоски имеют в сечении вид трапеции с тыльным основанием шириной W1=5,5 мкм, прилегающим к фронтальной поверхности фотоэлемента, и с фронтальной поверхностью шириной W2=2 мкм. Контактные полоски были выполнены на расстоянии l=70 мкм друг от друга. Высота контактных полосок h=2 мкм. Угол α между боковой поверхностью и тыльным основанием контактной полоски был равен 49°.

Был получен солнечный фотоэлектрический модуль с высокими параметрами преобразования солнечной энергии в электрическую, благодаря уменьшению потерь на затенение фоточувствительной поверхности солнечных элементов до 5%.

Похожие патенты RU2442244C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЧИПОВ КОНЦЕНТРАТОРНЫХ СОЛНЕЧНЫХ ФОТОЭЛЕМЕНТОВ 2010
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Калюжный Николай Александрович
  • Лантратов Владимир Михайлович
  • Малевская Александра Вячеславовна
  • Минтаиров Сергей Александрович
RU2436194C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАСКАДНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ Galnp/Galnas/Ge 2013
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Малевская Александра Вячеславовна
  • Задиранов Юрий Михайлович
  • Калюжный Николай Александрович
RU2528277C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЧИПОВ КАСКАДНЫХ ФОТОЭЛЕМЕНТОВ 2012
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Лантратов Владимир Михайлович
  • Малевская Александра Вячеславовна
  • Задиранов Юрий Михайлович
  • Усикова Анна Александровна
RU2493634C1
СПОСОБ ПОЛУЧЕНИЯ ЧИПОВ СОЛНЕЧНЫХ ФОТОЭЛЕМЕНТОВ 2010
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Калюжный Николай Александрович
  • Лантратов Владимир Михайлович
  • Малевская Александра Вячеславовна
  • Минтаиров Сергей Александрович
RU2419918C1
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ 2012
  • Андреев Вячеслав Михайлович
  • Давидюк Николай Юрьевич
  • Румянцев Валерий Дмитриевич
  • Садчиков Николай Анатольевич
RU2496181C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЧИПОВ НАНОГЕТЕРОСТРУКТУРЫ И ТРАВИТЕЛЬ 2012
  • Андреев Вячеслав Михайлович
  • Гребенщикова Елена Александровна
  • Калиновский Виталий Станиславович
  • Ильинская Наталья Дмитриевна
  • Малевская Александра Вячеславовна
  • Усикова Анна Александровна
  • Задиранов Юрий Михайлович
RU2485628C1
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2021
  • Андреев Вячеслав Михайлович
  • Покровский Павел Васильевич
  • Малевский Дмитрий Андреевич
  • Малевская Александра Вячеславовна
  • Давидюк Николай Юрьевич
  • Садчиков Николай Анатольевич
  • Ларионов Валерий Романович
RU2763386C1
ФОТОЭЛЕМЕНТ ПРИЁМНИКА-ПРЕОБРАЗОВАТЕЛЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2015
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2593821C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaSb 2014
  • Андреев Вячеслав Михайлович
  • Хвостиков Владимир Петрович
  • Сорокина Светлана Валерьевна
  • Хвостикова Ольга Анатольевна
  • Потапович Наталия Станиславовна
RU2575972C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЧИПОВ МНОГОСЛОЙНЫХ ФОТОЭЛЕМЕНТОВ 2012
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Лантратов Владимир Михайлович
  • Малевская Александра Вячеславовна
  • Задиранов Юрий Михайлович
  • Усикова Анна Александровна
RU2492555C1

Иллюстрации к изобретению RU 2 442 244 C1

Реферат патента 2012 года СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ СУБМОДУЛЬ

Солнечный фотоэлектрический субмодуль содержит концентратор солнечного излучения и фотоэлемент с контактными полосками на фронтальной фоточувствительной поверхности фотоэлемента. Контактные полоски имеют в поперечном сечении вид трапеции с большим тыльным основанием, прилегающим к фронтальной поверхности фотоэлемента, боковые поверхности контактных полосок выполнены зеркальными. Ширина W1 тыльного основания контактных полосок, ширина W2 верхней поверхности контактных полосок и угол α между боковой поверхностью и тыльным основанием контактных полосок удовлетворяют определенным соотношениям. Конструкция фотоэлектрического субмодуля согласно изобретению позволяет уменьшить потери, связанные с затенением светочувствительной поверхности фотоэлемента. 4 ил.

Формула изобретения RU 2 442 244 C1

Солнечный фотоэлектрический субмодуль, включающий концентратор солнечного излучения и фотоэлемент с контактными полосками на фронтальной фоточувствительной поверхности фотоэлемента, отличающийся тем, что контактные полоски имеют в поперечном сечении вид трапеции с большим тыльным основанием, прилегающим к фронтальной поверхности фотоэлемента, боковые поверхности контактных полосок выполнены зеркальными; при этом ширина W1 тыльного основания контактных полосок, ширина W2 фронтальной поверхности контактных полосок и угол α между боковой поверхностью и тыльным основанием контактных полосок удовлетворяют соотношениям:
W1=(0,05-0,1)l,
где l - расстояние между соседними контактными полосами;
2 мкм<W2<0,3·W1;

где h - высота контактных полосок,
D - размер апертуры концентратора,
F - фокусное расстояние концентратора.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442244C1

WO 2010027018 A1, 11.03.2010
US 2010132132793 A1, 03.06.2010
US 6051776 A, 18.04.2000
ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2009
  • Залесский Валерий Борисович
  • Есман Александр Константинович
  • Кулешов Владимир Константинович
RU2382952C1
ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ (ВАРИАНТЫ) 2004
  • Алферов Жорес Иванович
  • Андреев Вячеслав Михайлович
  • Зазимко Вадим Николаевич
  • Ионова Евгения Александровна
  • Ловыгин Игорь Владимирович
  • Румянцев Валерий Дмитриевич
  • Хвостиков Владимир Петрович
  • Чалов Алексей Евгеньевич
  • Шварц Максим Зиновьевич
RU2307294C9

RU 2 442 244 C1

Авторы

Андреев Вячеслав Михайлович

Ильинская Наталья Дмитриевна

Малевская Александра Вячеславовна

Румянцев Валерий Дмитриевич

Даты

2012-02-10Публикация

2010-08-31Подача