СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ Российский патент 2012 года по МПК H01L31/52 

Описание патента на изобретение RU2444809C2

Изобретение относится к гелиотехнике, в частности к конструкции солнечных фотоэлектрических модулей с фотоэлектрическими приемниками солнечного излучения и концентраторами.

Известны солнечные модули с фотоэлектрическими преобразователями (ФЭП) и концентраторами солнечного излучения в виде линзы Френеля (Д.С.Стребков, Э.В.Тверьянович. Концентраторы солнечного излучения, глава 2 «Концентраторы на основе линз Френеля», стр.50-66. Известные солнечные модули имеют линзы Френеля с рабочим профилем, создающим в плоскости фотоэлектрического преобразователя высокие концентрации в фокальной плоскости, достигающие 2000 крат и более, которые не могут быть использованы кремниевыми планарными ФЭП.

Известен солнечный фотоэлектрический модуль (прототип), состоящий из линзы Френеля и фотоэлектрического приемника, выполненного из последовательно соединенных секторов круглого планарного ФЭП и расположенного на фокусном расстоянии с соответствующей продольной дефокусировкой фокального пятна (Тверьянович Э.В., Красина Е.А., Жуков К.В., Мусихин М.В., Невежин О.А. Исследование фотоэлектрических модулей па основе линз Френеля. Сб. Концентраторы солнечного излучения для фотоэлектрических энергоустановок. Л.: Энергоатомиздат, 1986, с.33-36).

Недостатками известного технического решения являются:

- снижение КПД планарными кремниевыми ФЭП при высоких концентрациях солнечного излучения;

- расположение оптического фокуса на оси линзы Френеля и неоднородность распределения освещенности поверхности фотоприемника ограничивают конфигурацию и тип применяемых ФЭП (возможно применение только круглых планарных ФЭП);

- низкие напряжения на одном планарном ФЭП (~0,5 В) приводят к необходимости последовательной коммутации большого числа ФЭП в солнечном фотоэлектрическом модуле, чтобы набрать напряжение 12 В и выше, приемлемое для дальнейшего использования в электрических аккумуляторах, инверторах постоянного тока в переменный и т.п. Последовательная коммутация большого числа ФЭП уменьшает надежность системы, т.к. выход из строя одного элемента цепи приводит к отказу всей цепи.

Задачей предлагаемого изобретения является увеличение эффективности солнечного фотоэлектрического модуля при высоких концентрациях и создания равномерного освещения линейчатого фотоприемника, получение на фотоприемнике технически приемлемого напряжения (12 В и выше), повышение КПД преобразования и снижение стоимости вырабатываемой энергии. В результате использования предлагаемого изобретения на поверхности приемника формируется равномерная освещенность концентрированного излучения.

Вышеуказанный технический результат достигается тем, что в солнечном фотоэлектрическом модуле с концентратором, содержащем линзу Френеля и установленный в фокальной плоскости фотоэлектрический приемник с устройством охлаждения, концентратор составлен из последовательного набора секторов исходной концентрической ЛФ с равномерным распределением концентрированного излучения на кольцеобразной фокальной области; исходная концентрическая линза Френеля состоит из двух зон с рабочими профилями, одна зона с концентрацией лучей от периферии к центру, а другая зона от центра к периферии; рабочие профили чередуются под разным наклоном через интервал Δr, с образованием в фокальной плоскости кольцеобразной фокальной области шириной Δr с внутренним радиусом r0, равным r0=n0*Δr или r0=0,5(N-1)*Δr при среднем значении no=0,5(N-1), где no выбирается из ряда целых чисел n=0…N, кратному Δr, радиус исходной ЛФ равен величине R=N*Δr, где N - число интервалов величиной Δr, исходная линза разрезана по радиусу на определенное количество секторов, из которых собрана плоская линза Френеля прямоугольной формы, в которой соседние секторы установлены встречно друг другу с равномерным распределением концентрированного излучения на линейчатом фотоэлектрическом приемнике в фокальной плоскости; приемник выполнен в виде линейки из скоммутированных высоковольтных фотопреобразователей шириной d и длиной, равной значению L=2πro, приемник симметрично установлен на вторичном омегообразном параболическом концентраторе шириной d и длиной, равной значению L=2πro;

В способе изготовления солнечного фотоэлектрического модуля с концентратором путем изготовления линзы Френеля и фотоприемника с системой охлаждения изготавливают исходную концентрическую линзу Френеля с кольцеобразной фокальной областью с внутренним радиусом rо и шириной кольца Δr путем создания в линзе Френеля двух зон с рабочими профилями, одна зона с концентрацией лучей, направленных от периферии к центру симметрии линзы, а вторая зона с концентрацией лучей, направленных от центра симметрии к периферии; затем исходную линзу разрезают по радиусам на сектора и собирают из секторов прямоугольную линзу таким образом, чтобы соседние секторы в прямоугольной линзе были установлены встречно друг другу, а кольцеобразное фокальное пятно исходной концентрической линзы преобразуют в прямоугольное фокальное пятно с равномерным распределением концентрированного излучения на поверхности прямоугольного приемника; приемник изготавливают из скоммутированных высоковольтных фотоэлектрических преобразователей шириной d≥Δrγ и длиной, равной длине прямоугольного фокального пятна, приемник симметрично устанавливают на вторичном параболоцилиндрическом концентраторе шириной d и длиной, равной значению L=2πro;

В солнечном фотоэлектрическом модуле с концентратором, содержащим линзу Френеля, и установленный в фокальной плоскости фотоэлектрический приемник с устройством охлаждения концентратор составлен из последовательного набора секторов исходной концентрической ЛФ с равномерным распределением концентрированного излучения на кольцеобразной фокальной области; исходная концентрическая линза Френеля состоит из двух зон с рабочими профилями, одна зона с концентрацией лучей от периферии к центру, а другая зона от центра к периферии; рабочие профили чередуются под разным наклоном через интервал Δr с образованием в фокальной плоскости кольцеобразной фокальной области шириной Δr с внутренним радиусом r0, равным: r0=n0*Δr или r0=0,5(N-1)*Δr при среднем значении no=0,5(N-1), где no выбирается из ряда целых чисел n=0…N, кратному Δr, радиус исходной ЛФ равен величине R=N*Δr, где N - число интервалов величиной Δr, исходная линза разрезана по радиусу на определенное количество секторов и представляет собой плоскую линзу Френеля прямоугольной формы, в которой соседние секторы в прямоугольной линзе были установлены встречно друг другу с равномерным распределением концентрированного излучения на линейчатом фотоэлектрическом приемнике в фокальной плоскости; приемник выполнен в виде линейки из скоммутированных высоковольтных фотопреобразователей шириной Δr и длиной, равной значению L=2πro, приемник, симметрично установленный на вторичном омегообразном параболоцилиндрическом концентраторе шириной d и длиной, равной значению L=2πro;

В способе изготовления солнечного фотоэлектрического модуля с концентратором путем изготовления линзы Френеля и фотоприемника с системой охлаждения изготавливают исходную концентрическую линзу Френеля с кольцеобразной фокальной областью с внутренним радиусом ro и шириной кольца Δr путем создания в линзе Френеля двух зон с рабочими профилями, одна зона с концентрацией лучей, направленных от периферии к центру симметрии линзы, а вторая зона с концентрацией лучей, направленных от центра симметрии к периферии; затем исходную линзу разрезают по радиусам на сектора и собирают из секторов прямоугольную линзу таким образом, чтобы соседние секторы в прямоугольной линзе были установлены встречно друг другу, а кольцеобразное фокальное пятно исходной концентрической линзы преобразуют в прямоугольное фокальное пятно с равномерным распределением концентрированного излучения на поверхности прямоугольного приемника; приемник изготавливают из скоммутированных высоковольтных фотоэлектрических преобразователей шириной d≥Δrγ и длиной, равной длине прямоугольного фокального пятна, приемник симметрично устанавливают на вторичном параболоцилиндрическом концентраторе шириной d и длиной, равной значению L=2πro.

Сущность изобретения поясняется фиг.1, 2, 3, 4, 5, 6, 7, 8.

На фиг.1 представлена схема конструкции фотоэлектрического модуля с прямоугольной линзой Френеля с равномерным распределением концентрированного излучения на прямоугольном приемнике.

На фиг.2 представлена схема конструкции фотоэлектрического модуля с прямоугольной линзой Френеля с равномерным распределением концентрированного излучения на линейчатом приемнике, симметрично установленным на вторичном омегообразном параболоцилиндрическом концентраторе.

На фиг.3 представлена исходная концентрическая линза Френеля, разрезанная по радиусу на определенное количество идентичных частей.

На фиг.4 показан ход лучей от линзы Френеля до приемника.

На фиг.5 показан ход лучей в линзе Френеля с учетом параметрического угла γ.

На фиг.6 представлены величины смещения полосы освещенности приемника ΔN в зависимости от изменения параметрического угла y.

На фиг.7 представлены величины смещения полосы освещенности приемника ΔN и Δ, в зависимости от изменения ширины полосы освещенности Δr на поверхности приемника излучения.

На фиг.8 показано распределение освещенности по ширине освещаемой поверхности приемника излучения при параметрическом угле y=1°.

На фиг.1 представлен фотоэлектрический модуль, содержащий прямоугольную линзу Френеля 1, составленную из последовательного набора секторов 2 исходной концентрической ЛФ 3 с равномерным распределением концентрированного излучения в фокальном пятне 4 и линейчатый фотоэлектрический приемник 5 из высоковольтных фотопреобразователей в фокальной плоскости 6 с устройством охлаждения 7;

Линейчатый фотоэлектрический приемник состоит из высоковольтных фотопреобразователей в фокальной плоскости и симметрично установлен на вторичном омегообразном параболоцилиндрическом концентраторе 8;

Исходная концентрическая линза Френеля 3 состоит из двух зон с рабочими профилями, одна зона 9 с концентрацией лучей от периферии к центру, а другая зона 10 - от центра симметрии 11 к периферии; солнечное излучение, проходящее сквозь ЛФ, преломляется на рабочих поверхностях, чередующихся под разными углами наклона через интервал Δr, складываясь в фокальной плоскости в кольцеобразное концентрированное световое пятно 4 шириной Δr с внутренним радиусом r0, равным r0=n0*Δr или r0=0,5(N-1)*Δr при среднем значении параметра no=0,5(N-1), где no выбирается из ряда целых чисел n=0…N, кратному Δr, радиус исходной линзы Френеля (ЛФ) равен величине R=N*Δr, где N - число интервалов величиной Δr.

Основные расчетные соотношения хода лучей от линзы Френеля 3 до приемника с учетом параметрического угла γ:

где βn - угол между лучом, перпендикулярным наружной плоскости ЛФ, и преломленным лучом, попадающим на приемник, расположенным на радиусе Rno; j1n - угол между лучом, перпендикулярным наружной плоскости ЛФ, и лучом, перпендикулярным к рабочей плоскости, расположенным на радиусе Rn; j2n - угол между лучом, перпендикулярным к рабочей плоскости линзы Френеля, и преломленным лучом, попадающим на приемник, расположенным на радиусе Rno=r0.

где βy - угол между лучом, перпендикулярным наружной плоскости ЛФ, и преломленным лучом, попадающим на приемник; jy2 - угол между преломленным рабочей плоскостью ЛФ лучом, попадающим на приемник, и прямой, перпендикулярной к рабочей плоскости, расположенным на радиусе Rn;

где j1 - угол между лучом, преломленным наружной плоскостью ЛФ, и прямой, перпендикулярной к наружной плоскости; jy1 - угол между лучем, преломленным наружной плоскостью ЛФ, и прямой, перпендикулярной к рабочей плоскости, расположенным на радиусе Rn;

где γ - параметрический угол (угол отклонения от нормального падения солнечного излучения на наружную поверхность ЛФ, при котором не изменяются энергетические параметры модуля).

где nγ0 - смещенный параметр величины относительно no=0,5(N-1).

Величина смещения n-ой составляющей светового пятна Δn равна:

Величина смещения ширины n-ой составляющей светового пятна δn равна:

Величина ширины светового пятна Δrγ равна:

Величина ширины светового пятна с максимальным значением концентрации светового пятна Δrк равна:

Ширина приемника d должна соответствовать значению d≥Δrγ.

Максимальная величина смещения светового пятна Δ равна:

Концентрация освещенности на приемнике Kn от каждой рабочей плоскости ЛФ равна:

Концентрация освещенности на приемнике Kyn от каждой рабочей плоскости ЛФ с учетом взаимных перекрытий равна:

Распределение концентрации освещенности Kδ в интервалах значений величин смещения ширины n-ой, составляющей светового пятна δn, равно:

Распределение концентрации освещенности K по радиусу приемника рассчитывается с учетом величины ширины светового пятна Δrk с максимальным значением концентрации светового пятна.

На основании приведенных формул произведен расчет зависимости геометрической концентрации модуля от ширины (площади) светового пятна (фиг.4).

При уменьшении внутреннего радиуса светового пятна r0 от R до 0 (при постоянном значении Δr), т.е. при уменьшении площади светового пятна происходит увеличение геометрической концентрации модуля Kno.

Таким образом, можно изменять геометрическую концентрацию модуля, не меняя габаритных размеров линзы Френеля и выбранный тип приемника.

На фиг.5 приведены зависимости распределения концентрации освещенности по ширине светового пятна, имеющего различные величины Δr. Из приведенных характеристик видно, что концентрация освещенности по ширине светового пятна на приемнике не изменяется. При уменьшении ширины радиуса Δr (уменьшении площади приемника) происходит увеличение геометрического теоретического коэффициента концентрации модуля.

Таким образом, можно задавать геометрическую концентрацию модуля, не изменяя габаритных размеров линзы Френеля 3.

Пример выполнения солнечного модуля с концентратором. Исходная концентрическая линза Френеля 3 радиусом R=15 см выполнена из пластмассы с коэффициентом преломления n12=1,5; рабочий профиль линзы состоит из чередующихся концентрических призм шириной Δr=1 см с углами наклона, обеспечивающих концентрацию лучей в фокальной плоскости 6 в кольцеобразное концентрированное световое пятно 4 шириной Δr=1 см с внутренним радиусом r0=7 см.

Прямоугольный концентратор 1 составлен из последовательного набора секторов 2 исходной концентрической ЛФ 3, разрезанной по радиусу на 30 идентичных частей, обеспечивающей равномерное распределение концентрированного солнечного излучения в кольцеобразном световом пятне 10 шириной Δr с внутренним радиусом r0 в фокальной плоскости 6. Линейчатый фотоэлектрический приемник 5 состоит из высоковольтных фотопреобразователей (ФЭП) шириной Δr=1 см, закрепленных на устройстве охлаждения 7 на расстоянии H=28,6 см. Концентрация освещенности на поверхности фотоэлектрического приемника 5 равна 15 крат. Ширина прямоугольного концентратора 1 равна 15 см, длина - 47 см, ширина приемника 5 равна 2 см, длина - 47 см, высота модуля - 30 см. Вторичный отражающий ω-образный цилиндрический концентратор 8, поперечное сечение которого выполнено по окружности с радиусом 2 см, с воспринимающей излучение плоскостью, в центре которой расположен фотоприемник 5 с двусторонней рабочей поверхностью.

Таким образом, предложенный фотоэлектрический модуль солнечного концентрированного излучения с прямоугольной линзой Френеля 1 обеспечивает равномерное распределение освещенности на линейчатом фотоэлектрическом приемнике 5 из последовательно-параллельно соединенных высоковольтных ФЭП, тем самым повышая напряжение модуля и КПД преобразования солнечной энергии в электрическую.

Работает солнечный фотоэлектрический модуль с концентратором следующим образом.

Солнечное излучение, попадая на поверхность прямоугольной линзы Френеля 1, составленной из последовательного набора секторов 2 исходной концентрической ЛФ 3, преломляется на ее рабочих профилях, изготовленных с интервалами Δr и углами наклона j1n и ориентированных в своих зонах таким образом, чтобы одна зона 9 обеспечивала концентрацию лучей в фокальной плоскости от периферии к центру, а другая зона 10 - от центра симметрии 11 исходной линзы 3 к периферии под углами βn.

Таким образом, на поверхности линейчатого высоковольтного фотоэлектрического преобразователя 5 шириной Δr и длиной, равной длине прямоугольного концентратора сформирована равномерная освещенность концентрированного излучения.

При отклонении нормально падающего солнечного излучения на поверхность прямоугольной линзы Френеля 1 в пределах параметрического угла γ преломленные лучи, отражаясь от внутренней поверхности ω-образного концентратора 8, приходят на тыльную сторону фотоприемника не уменьшая, тем самым, общей освещенности концентрированного излучения на фотоприемнике.

Похожие патенты RU2444809C2

название год авторы номер документа
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ 2010
  • Майоров Владимир Александрович
  • Стребков Дмитрий Семенович
RU2444808C2
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2009
  • Майоров Владимир Александрович
  • Стребков Дмитрий Семенович
  • Тверьянович Эдуард Владимирович
RU2411422C1
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С ПАРАБОЛОТОРИЧЕСКИМ КОНЦЕНТРАТОРОМ 2011
  • Майоров Владимир Александрович
  • Панченко Владимир Анатольевич
  • Стребков Дмитрий Семенович
RU2505755C2
МОЩНЫЙ КОНЦЕНТРАТОРНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2020
  • Андреев Вячеслав Михайлович
  • Давидюк Николай Юрьевич
  • Малевский Дмитрий Андреевич
  • Покровский Павел Васильевич
  • Потапович Наталия Станиславовна
  • Садчиков Николай Анатольевич
  • Чекалин Александр Викторович
RU2740738C1
СОЛНЕЧНЫЙ МОДУЛЬ С ПАРАБОЛОТОРИЧЕСКИМ КОНЦЕНТРАТОРОМ В СОСТАВЕ С ДВИГАТЕЛЕМ СТИРЛИНГА 2012
  • Майоров Владимир Александрович
  • Панченко Владимир Анатольевич
  • Стребков Дмитрий Семенович
RU2522376C2
СОЛНЕЧНЫЙ ТЕПЛОФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С ПАРАБОЛОТОРИЧЕСКИМ КОНЦЕНТРАТОРОМ 2012
  • Майоров Владимир Александрович
  • Панченко Владимир Анатольевич
  • Стребков Дмитрий Семенович
RU2543256C2
ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ ИЗЛУЧЕНИЯ 2023
  • Андреев Вячеслав Михайлович
  • Покровский Павел Васильевич
RU2812093C1
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ ИЗЛУЧЕНИЯ 2023
  • Андреев Вячеслав Михайлович
  • Малевский Дмитрий Андреевич
  • Давидюк Николай Юрьевич
RU2817554C1
СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ (ВАРИАНТЫ) 2009
  • Стребков Дмитрий Семенович
  • Осьмаков Михаил Иванович
  • Плохих Сергей Александрович
RU2431086C2
СОЛНЕЧНЫЙ КОНЦЕНТРАТОРНЫЙ МОДУЛЬ (ВАРИАНТЫ) 2011
  • Стребков Дмитрий Семенович
  • Митина Ирина Валерьевна
RU2488915C2

Иллюстрации к изобретению RU 2 444 809 C2

Реферат патента 2012 года СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике. Солнечный фотоэлектрический модуль с концентратором содержит линзу Френеля (ЛФ) с концентрическим рабочим профилем и установленный в фокальной плоскости фотоэлектрический приемник с устройством охлаждения, концентратор составлен из последовательного набора секторов исходной концентрической ЛФ, с равномерным распределением концентрированного излучения на кольцеобразной фокальной области; исходная концентрическая линза Френеля состоит из двух зон с рабочими профилями, одна зона с концентрацией лучей от периферии к центру, а другая зона от центра к периферии; рабочие профили чередуются под разным наклоном через интервал Δr, с образованием в фокальной плоскости кольцеобразной фокальной области шириной Δr с внутренним радиусом r0, равным: r0=n0*Δr или r0=0,5(N-1)*Δr при среднем значении no=0,5(N-1), где no выбирается из ряда целых чисел n=0…N, кратному Δr, радиус исходной ЛФ равен величине R=N*Δr, где N - число интервалов величиной Δr, исходная линза разрезана по радиусу на определенное количество секторов и представляет собой плоскую ЛФ прямоугольной формы, в которой соседние секторы установлены встречно друг другу с равномерным распределением концентрированного излучения на линейчатом фотоэлектрическом приемнике в фокальной плоскости, а приемник выполнен в виде линейки из скоммутированных высоковольтных фотопреобразователей шириной d≥Δrγ и длиной, равной значению L=2πro; приемник симметрично установлен на вторичном омегообразном параболоцилиндрическом концентраторе вторичном омегообразном параболоцилиндрическом концентраторе шириной d и длиной, равной значению L=2πro. Также предложен способ изготовления солнечного фотоэлектрического модуля с концентратором путем изготовления линзы Френеля и фотоприемника с системой охлаждения. Изобретение обеспечивает повышение КПД преобразования и снижение стоимости вырабатываемой энергии. 2 н.п. ф-лы, 8 ил.

Формула изобретения RU 2 444 809 C2

1. Солнечный фотоэлектрический модуль с концентратором, содержащий линзу Френеля с концентрическим рабочим профилем и установленный в фокальной плоскости фотоэлектрический приемник с устройством охлаждения, отличающийся тем, что концентратор составлен из последовательного набора секторов исходной концентрической ЛФ с равномерным распределением концентрированного излучения на кольцеобразной фокальной области; исходная концентрическая линза Френеля состоит из двух зон с рабочими профилями, одна зона с концентрацией лучей от периферии к центру, а другая зона от центра к периферии; рабочие профили чередуют под разным наклоном через интервал Δr с образованием в фокальной плоскости кольцеобразной фокальной области шириной Δr с внутренним радиусом r0, равным r0=n0·Δr или r0=0,5(N-1)·Δr при среднем значении n0=0,5(N-1), где n0 выбирается из ряда целых чисел n=0…N, кратному Δr, радиус исходной ЛФ равен величине R=N·Δr, где N - число интервалов величиной Δr, исходная линза разрезана по радиусу на определенное количество секторов, из которых собрана плоская линза Френеля прямоугольной формы, в которой соседние сектора установлены встречно друг другу с равномерным распределением концентрированного излучения на линейчатом фотоэлектрическом приемнике в фокальной плоскости, а приемник выполнен в виде линейки из скоммутированных высоковольтных фотопреобразователей шириной d≥Δrγ и длиной, равной значению L=2πr0; приемник симметрично установлен на вторичном омегообразном параболоцилиндрическом концентраторе шириной d и длиной равной, значению L=2πr0.

2. Способ изготовления солнечного фотоэлектрического модуля с концентратором путем изготовления линзы Френеля и фотоприемника с системой охлаждения, отличающийся тем, что изготавливают исходную концентрическую линзу Френеля с кольцеобразной фокальной областью с внутренним радиусом r0 и шириной кольца Δr путем создания в линзе Френеля двух зон с рабочими профилями, одна зона с концентрацией лучей, направленных от периферии к центру симметрии линзы, а вторая зона с концентрацией лучей, направленных от центра симметрии к периферии; затем исходную линзу разрезают по радиусам на сектора и собирают из секторов прямоугольную линзу таким образом, чтобы соседние сектора в прямоугольной линзе были установлены встречно друг другу, а кольцеобразное фокальное пятно исходной концентрической линзы преобразуют в прямоугольное фокальное пятно с равномерным распределением концентрированного излучения на поверхности прямоугольного приемника; приемник изготавливают из скоммутированных высоковольтных фотоэлектрических преобразователей шириной d≥Δrγ и длиной, равной длине прямоугольного фокального пятна, симметрично устанавливают на вторичном параболоцилиндрическом концентраторе шириной d и длиной, равной значению L=2πr0.

Документы, цитированные в отчете о поиске Патент 2012 года RU2444809C2

Тверьянович Э.В
и др
Исследование фотоэлектрических модулей на основе линз Френеля
Сб.: Концентраторы солнечного излучения для фотоэлектрических энергоустановок
- Л.: Энергоатомиздат, 1986, с.33-36
Пинцет для захватывания кишек 1934
  • Эдельштейн Г.Л.
SU44002A1
ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ (ВАРИАНТЫ) 2004
  • Алферов Жорес Иванович
  • Андреев Вячеслав Михайлович
  • Зазимко Вадим Николаевич
  • Ионова Евгения Александровна
  • Ловыгин Игорь Владимирович
  • Румянцев Валерий Дмитриевич
  • Хвостиков Владимир Петрович
  • Чалов Алексей Евгеньевич
  • Шварц Максим Зиновьевич
RU2307294C9
Поперечный слип с беспересадочным перемещением судна 1947
  • Зиневич Д.И.
SU82066A1
КОНЦЕНТРАТОРНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2008
  • Алексеев Алексей Валентинович
  • Белоусов Виктор Сергеевич
  • Эйдельман Борис Львович
RU2377696C1
JP 2005099802 A, 14.04.2005
US 6653551 B2, 25.11.2003.

RU 2 444 809 C2

Авторы

Майоров Владимир Александрович

Стребков Дмитрий Семенович

Даты

2012-03-10Публикация

2010-06-10Подача