Изобретение относится к машиностроению и может быть использовано при стендовых испытаниях жидкостных ракетных двигателей (ЖРД) и других энергоустановок с криогенными компонентами топлива.
Известен стенд для испытаний ЖРД, содержащий системы подачи компонентов топлива к ЖРД, включающий в себя расходные баки, разделительные емкости, бустерные емкости, топливные магистрали, топливную арматуру, трубопроводы высокого давления (Жуковский А.Е. и др. «Испытания жидкостных ракетных двигателей», М.: Машиностроение, 1981, стр.112-125, рис.44).
Известен стенд для испытания воздушно-реактивных двигателей (Солохин Э.Л. «Испытания авиационных воздушно-реактивных двигателей», М.: Машиностроение, 1975, с.136, фиг.3.19), содержащий подводящий трубопровод, присоединенный трубопровод и динамоплатформу с силоизмерительным устройством.
Известен стенд для испытаний энергоустановок, содержащий системы подачи компонентов топлива, включающие в себя расходные баки, разделительные емкости, бустерные емкости, расходные магистрали с расходомерами, пусковые магистрали с расходомерами, пусковые магистрали, топливную арматуру, магистрали сжатых газов (см. патент РФ №2111373, кл. MПK F02K 9/58, публ. 20.12.1998 - прототип).
Общим недостатком известных устройств является недостаточная эффективность использования компонентов топлива.
Целью предлагаемого технического решения являются устранение указанного недостатка и более эффективное использование компонентов топлива.
Указанная цель достигается тем, что в известном техническом решении стенд для испытаний энергоустановок с криогенными компонентами топлива, включающий систему подачи топлива, теплоизолированные расходные емкости, магистральные трубопроводы с системой управления процессов испытаний и контроля параметров, соединяющие накопительные емкости с испытываемой энергоустановкой, согласно изобретению система подачи компонентов топлива, кроме теплоизолированных расходных емкостей, снабжена, как минимум, одной нетеплоизолированной накопительной емкостью высокого давления, снабженной магистральными трубопроводами с клапанами, соединяющими ее с входным и выходным охлаждающим трактом энергоустановки, таким образом, что имеется возможность подачи в нее остатков жидкого компонента после проведения испытаний энергоустановки и подачи этого компонента после его газификации на вход энергоустановки для проведения другого рода испытаний.
Указанная совокупность признаков проявляет новые свойства, заключающиеся в том, что благодаря ей появляется возможность использования для проведения испытаний энергоустановок ранее сбрасываемых в атмосферу после захолаживания остатков компонентов топлива.
Принципиальная схема предлагаемого устройства показана на фиг.1, где:
1. Теплоизолированные расходные емкости.
2. Магистральные трубопроводы подачи криогенного компонента в энергоустановку и накопительные емкости.
3. Система управления и контроля.
4. Испытываемая энергоустановка.
5. Магистральные трубопроводы подачи компонента в накопительные емкости после «захолаживания» энергоустановки.
6. Магистральные трубопроводы подачи остатков компонента в накопительные емкости.
7. Клапаны.
8. Не теплоизолированная накопительная емкость высокого давления.
9. Магистральные трубопроводы подачи газифицированного компонента в энергоустановку.
Стенд для испытаний энергоустановок с криогенными компонентами топлива включает систему подачи топлива, содержащую теплоизолированные расходные емкости 1, магистральные трубопроводы подачи криогенного компонента в энергоустановку и накопительные емкости 2, систему управления процессом испытаний и контроля параметров 3. Теплоизолированные расходные емкости 1 соединены магистральными трубопроводами подачи криогенного компонента в энергоустановку и накопительные емкости 2 с испытываемой энергоустановкой 4.
Кроме того, энергоустановка 4 соединена магистральными трубопроводами 5 подачи компонента в накопительные емкости после «захолаживания» энергоустановки, содержащими клапана 7 с не теплоизолированной накопительной емкостью высокого давления 8.
Подготовка работы стенда заключается в настройке циклограммы работы клапанов таким образом, чтобы осуществлялась возможность подачи в накопительные емкости остатков жидкого компонента после проведения испытаний и подачи этого компонента после его газификации на вход энергоустановки для проведения другого рода испытаний, причем энергия для газификации компонента берется с атмосферного воздуха, т.к. накопительная емкость высокого давления не теплоизолирована.
Предложенный стенд для испытаний энергоустановок с криогенными компонентами топлива работает следующим образом. Из расходных емкостей 1 криогенные топлива по магистральным трубопроводам 2 по команде из системы управления (циклограмме) 3 поступают в энергоустановку 4 для охлаждения конструкции турбонасосного агрегата до криогенной температуры в целях предотвращения кавитации его во время испытания. Газифицированные в трактах охлаждения после турбонасосного агрегата компоненты топлива после энергоустановки 4 по трубопроводу 5, с установленным в них агрегатами управления 7, поступают в накопительные емкости 8, проходят через них и их предварительно охлаждают для подготовки к более полному приему остатков топлива из расходных емкостей после испытаний. После проведения испытания (например: огневого) по магистральным трубопроводам 6 остатки криогенного топлива из расходных емкостей 1 подаются в накопительные емкости 8. В замкнутом объеме накопительных емкостей при закрытых агрегатах управления 7 компоненты топлива испаряются с одновременным повышением давления за счет подвода тепла из окружающей среды. При достижении заданного уровня давления, газифицированные компоненты топлива подаются по трубопроводу 9 к энергоустановке для проведения другого рода испытаний.
Таким образом, использование предлагаемого технического решения позволит более эффективно использовать компоненты топлива во время испытаний энергоустановок и повысить тем самым эффективность работы испытательного стенда.
название | год | авторы | номер документа |
---|---|---|---|
Стенд для испытаний насосной системы подачи порошкообразного металла в камеру сгорания ракетного двигателя | 2021 |
|
RU2770072C2 |
СТЕНД ДЛЯ ИСПЫТАНИЙ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК С НАКОПЛЕНИЕМ ОТРАБОТАННОГО ТЕХНОЛОГИЧЕСКОГО ГАЗА | 2015 |
|
RU2611119C1 |
СПОСОБ ИСПЫТАНИЯ ЭНЕРГОУСТАНОВОК И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2016 |
|
RU2631371C1 |
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА СЖИГАНИЯ ПРОДУКТОВ ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКИХ КОМПОНЕНТОВ РАКЕТНОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2015 |
|
RU2588343C1 |
Энергетическая установка замкнутого цикла системы автономного энергообеспечения специальных объектов | 2024 |
|
RU2824694C1 |
СТЕНД ДЛЯ ИСПЫТАНИЯ КРИОГЕННЫХ НАСОСОВ | 2000 |
|
RU2213264C2 |
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ВЫВЕДЕНИЕМ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ | 2013 |
|
RU2561418C2 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МНОГОКРАТНОГО ВКЛЮЧЕНИЯ (ВАРИАНТЫ) | 2011 |
|
RU2447313C1 |
Криогенный жидкостный ракетный двигатель комбинированной схемы (варианты) | 2020 |
|
RU2755848C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1995 |
|
RU2095608C1 |
Изобретение относится к машиностроению и может быть использовано при стендовых испытаниях жидкостных ракетных двигателей (ЖРД) и других энергоустановок с криогенными компонентами топлива. Стенд для испытаний энергоустановок с криогенными компонентами топлива, включающий систему подачи топлива, теплоизолированные расходные емкости, магистральные трубопроводы с системой управления процессов испытаний и контроля параметров, соединяющие накопительные емкости с испытываемой энергоустановкой, при этом система подачи компонентов топлива снабжена, как минимум, одной нетеплоизолированной накопительной емкостью высокого давления, снабженной магистральными трубопроводами с клапанами, соединяющими ее с входными и выходными охлаждающими трактами энергоустановки с возможностью подачи в нее остатков жидкого компонента после проведения испытаний энергоустановки и подачи этого компонента после его газификации на вход энергоустановки для проведения испытаний. Изобретение обеспечивает повышение эффективности использования компонентов топлива. 1 ил.
Стенд для испытаний энергоустановок с криогенными компонентами топлива, включающий систему подачи топлива, теплоизолированные расходные емкости, магистральные трубопроводы с системой управления процессов испытаний и контроля параметров, соединяющие накопительные емкости с испытываемой энергоустановкой, отличающийся тем, что система подачи компонентов топлива снабжена как минимум одной нетеплоизолированной накопительной емкостью высокого давления, снабженной магистральными трубопроводами с клапанами, соединяющими ее с входными и выходными охлаждающими трактами энергоустановки с возможностью подачи в нее остатков жидкого компонента после проведения испытаний энергоустановки и подачи этого компонента после его газификации на вход энергоустановки для проведения испытаний.
СТЕНД ДЛЯ ИСПЫТАНИЙ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ | 1996 |
|
RU2111373C1 |
ЖУКОВСКИЙ А.Е | |||
и др | |||
Испытание жидкостных ракетных двигателей | |||
- М.: Машиностроение, 1981, с.112-125, рис.44 | |||
US 5165229 А, 24.11.1992 | |||
DE 3838077 C1, 19.10.1989. |
Авторы
Даты
2012-03-20—Публикация
2010-10-08—Подача