СПОСОБ ПОЛУЧЕНИЯ НАНОВОЛОКОН ИЗ АЛИФАТИЧЕСКИХ СОПОЛИАМИДОВ Российский патент 2012 года по МПК D01F6/80 B82B3/00 D01F6/60 B82B1/00 D01F6/78 C08L77/02 

Описание патента на изобретение RU2447207C1

Изобретение относится к процессам получения нановолокон методом электроформования, в частности нановолокон с диаметром d=50-4500 нм из алифатических сополиамидов.

Метод электроформования позволяет получать полимерные волокна с диаметром от 50 нм до 4500 нм. Электрическое поле высокого напряжения Е, куда попадает струя раствора или расплава, приводит к поляризации полимера, осаждению нановолокон на противоположном электроде (фиг.1).

Известно получение таким способом нановолокон из ПВС, ПЭО, ПВП, производных целлюлозы и других полимеров. Материалы из таких волокон характеризуются низкой плотностью, высокой пористостью, влаго- и газопроницаемостью (1, 2, 3).

В патенте (4) описан способ получения пористых нановолокон из ПЭ, ПП, ПС, ПА, ПВС, ПВП, ПЭО, ПММА, полилактида, полисахаридов. На примере полилактида показано, что отличительной особенностью предлагаемого способа является формирование в волокнах продольных пор.

Известны способы получения нановолокон из водорастворимых полимеров (4); такие волокна обладают низкой водостойкостью, высоким набуханием или растворимостью в водных средах.

Алифатические сополиамиды, состоящие из поли-ε-капролактама и полигексаметиленадипинамида или поли-ε-капролактама и полигексаметиленадипинамида и полигексаметиленсебацинамида или полигексаметиленадипинамида и полигексаметиленсебацинамида, представляют интерес для получения нановолокон методом электроформования, т.к. они растворяются в спиртоводных смесях.

Эти полимеры используются для получения пористых пленочных материалов методом коагуляции полимера в «жесткой» осадительной ванне. При формовании раствора сополиамида через щелевую фильеру, выдержке сформованного раствора на подложке в течение времени, необходимого для гелеобразования полимера, и последующем осаждении в воду получается пленочный материал с размерами пор 1,0-10,0 мкм (2).

Спирторастворимые сополиамиды используются как клеи для получения волокон из расплавов и растворов, для поверхностной обработки шовных нитей и т.д. (3).

Наибольший интерес для формования волокон и пленок представляет сополимер полигексаметиленадипинамида и полигексаметиленсебацинамида (СПА), он обладает лучшими пленко- и волокнообразующими свойствами (6).

Растворителем для этого СПА является спиртоводная смесь, что делает процесс формования экологически безопасными. Материалы из этого полимера не содержат остатков растворителя, вредных для здоровья, сохраняют свои эксплуатационные характеристики в водных средах в течение длительного времени.

Получение волокон методом электроформования из раствора полиамида-6 описано в патенте (5), где в качестве растворителя использовалась концентрированная (88%) муравьиная кислота [US № 7618702].

В приведенном способе получения нановолокон из растворов и, в частности, растворов полиамида используются концентрированные кислоты или летучие органические растворители, что существенно осложняет процесс электроформования, несет большую экологическую нагрузку. Указанный способ является наиболее близким по сущности и достигаемому результату.

Технической задачей изобретения и положительным результатом является получение нановолокон из алифатического СПА методом электроформования, установление зависимости структуры нановолокон от концентрации раствора СПА и напряженности электрического поля, получение водостойких волокон с использованием экологически безопасного растворителя.

Это достигается получением раствора концентрацией 15-30 мас.% сополимера полигексаметиленадипинамида и полигексаметиленсебацинамида с соотношением 60:40 мас.% в спирто-водной смеси с содержанием этанола 45-97 об.%, фильтрацией раствора, его обезвоздушиванием и подачей через электрод-фильеру в электрическое поле с напряженностью E=1,5×104-4,0×105 В/м при расстоянии между электродами 0,1-0,5 м; осаждением на электроде противоположного знака нановолокон с диаметром d=50-4500 нм.

Оптимальное содержание этанола в спирто-водном растворителе сополимера полигексаметиленадипинамида и полигексаметиленсебацинамида составляет 80 об.% (фиг.2).

Концентрация раствора СПА, обеспечивающая реологические свойства, необходимые для формования волокон, не превышает 30 мас.% (фиг.3).

Концентрация СПА в спирто-водной смеси с содержанием этанола 80 об.%, обеспечивающая стабильные во времени растворы, составляет 15-25 мас.% (фиг.4).

Формование из растворов СПА с концентрацией 20-30 мас.% позволяет получить волокна, однородные по сечению и равномерные по длине (фиг.5, 6, 7, 8).

Диаметр волокон, полученных методом электроформования, зависит от концентрации раствора СПА и составляет 50-4500 нм (фиг.9).

Формование из растворов с концентрацией 20-30 мас.% в электрическом поле с напряженностью E=1,5×104÷4,0×105 В/м позволяет получить волокна, однородные по сечению и равномерные по длине (фиг.10, 11).

Способ поясняется графическим материалом, где

на фиг.1 - блок-схема установки электроформования волокон;

1 - высоковольтный блок; 2 - дозирующее устройство; 3 - электрод-фильера; 4 - осаждающий электрод; E - напряженность электрического поля; I - расстояние между электродами;

на фиг.2 - диаграмма жидкость - твердое тело растворов СПА концентрацией 15 мас.%; t - время выдержки раствора при T=20°C, C - содержание этанола в спирто-водной смеси;

на фиг.3 - зависимость вязкости раствора СПА η от концентрации C; растворитель этанол/вода = 80/20;

на фиг.4 - диаграмма жидкость - твердое тело растворов СПА в растворителе этанол/вода = 80/20; t - время выдержки раствора при T=20°C, C - концентрация раствора СПА;

на фиг.5 - микрофотографии волокон СПА, полученные из растворов различной концентрации 10%;

на фиг.6 - микрофотографии волокон СПА, полученные из растворов различной концентрации 20%;

на фиг.7 - микрофотографии волокон СПА, полученные из растворов различной концентрации 25%;

на фиг.8 - микрофотографии волокон СПА, полученные из растворов различной концентрации 30%;

на фиг.9 - зависимость диаметра волокна d от С - концентрации раствора СПА;

на фиг.10 - микрофотографии волокон СПА, полученных в электрическом поле с напряженностью E=2,0×105 В/м;

на фиг.11 - микрофотографии волокон СПА, полученных в электрическом поле с напряженностью E=1,0×105 В/м.

Способ более полно раскрывается примерами его осуществления.

Пример 1. Сополимер полигексаметиленадипинамида и полигексаметиленсебацинамида (вязкость 10% раствора в спирто-водной смеси 80/20 при T=20°C, η=10-1 Па∙с) растворяют в спирто-водном растворителе, содержащем 80 об.% этанола, при постоянном перемешивании в течение 1 часа, T=80 C, концентрация раствора - 20 мас.%. Раствор фильтруют через два слоя бязи при давлении 1 атм, затем обезвоздушивают при давлении 0,1 атм в течение 1 часа. Полученный раствор помещают в шприцевой дозатор, оснащенный металлической фильерой длиной 20 мм и диаметром 0,6 мм. Скорость подачи полимера 0,2 мл/мин. К фильере, соединенной с катодом высоковольтного генератора, подается напряжение 16 кВ. Осаждение волокон происходит на аноде. Расстояние между катодом и анодом l=0,16 м. Волокна имеют средний диаметр 500 нм.

Пример 2. Сополимер полигексаметиленадипинамида и полигексаметиленсебацинамида (вязкость 10% раствора в спирто-водной смеси 80/20 при T=20°C, η=10-1 Па∙с) растворяют в спирто-водном растворителе, содержащем 80 об.% этанола, при постоянном перемешивании в течение 1 часа, T=80 C, концентрация раствора 15 мас.%. Раствор фильтруют через два слоя бязи при давлении 1 атм, затем обезвоздушивают при давлении 0,1 атм в течение 1 часа. Полученный раствор помещают в шприцевой дозатор, оснащенный металлической фильерой длиной 20 мм и диаметром 0,6 мм. Скорость подачи полимера 0,2 мл/мин. К фильере, соединенной с катодом высоковольтного генератора, подается напряжение 16 кВ. Осаждение волокон происходит на аноде. Расстояние между катодом и анодом l=0,08 м. Волокна имеют средний диаметр 200 нм.

Пример 3. Сополимер поли-ε-капролактама и полигексаметиленадипинамида полигексаметиленадипинамида (вязкость 10% раствора в спирто-водной смеси 80/20 при T=20°C, η=10-2 Па∙с) растворяют в спирто-водном растворителе, содержащем 80 об.% этанола, при постоянном перемешивании в течение 1 часа, T=80 C, концентрация раствора 15 мас.%. Раствор фильтруют через два слоя бязи при давлении 1 атм, затем обезвоздушивают при давлении 0,1 атм в течение 1 часа. Полученный раствор помещают в шприцевой дозатор, оснащенный металлической фильерой длиной 20 мм и диаметром 0,6 мм. Скорость подачи полимера 0,2 мл/мин. К фильере, соединенной с катодом высоковольтного генератора, подается напряжение 16 кВ. Осаждение волокон происходит на аноде. Расстояние между катодом и анодом l=0,08 м. Волокна имеют продольные дефекты в виде капель.

Таким образом, как продемонстрировано выше, эффективность способа заключается в выборе спирторастворимого алифатического сополиамида, содержащего полигексаметиленадипинамид и полигексаметиленсебацинамид, растворение его в спиртоводной смеси, содержащей 80 об.% этанола, подачу раствора, содержащего 20-30 мас.% СПА в электрическое поле с напряженностью E=1,5×104-4,0×105 В/м.

Литература

1. J.D.Schiffman, C.L.Schauer. Review: Electrospinning of biopolymer Nanofibers and their Applications, Polymer Reviews, v.48 pp.317-352, 2008.

2. M.Мулдер. Введение в мембранную технологию М.: Мир, 1999.

3. Патент РФ 2039535.

4. US 6,790,528, 2004.

5. US 7,618,702, 2009.

6. О.И.Начинкин. Полимерные микрофильтры, М., Химия, 1985.

Похожие патенты RU2447207C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОВОЛОКОН ИЗ АЛИФАТИЧЕСКИХ СОПОЛИАМИДОВ ЭЛЕКТРОФОРМОВАНИЕМ, СОСТАВ ФОРМОВОЧНОГО РАСТВОРА ДЛЯ ЭТОГО СПОСОБА, И СПОСОБ МОДИФИЦИРОВАНИЯ НАНОВОЛОКОН, ПОЛУЧЕННЫХ ЭТИМ СПОСОБОМ 2013
  • Бражникова Евгения Николаевна
  • Внучкин Александр Васильевич
  • Забивалова Наталья Михайловна
  • Насибулина Евгения Рушановна
RU2537591C2
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО ПЛЕНОЧНОГО МАТЕРИАЛА 2011
  • Добровольская Ирина Петровна
  • Попрядухин Павел Васильевич
  • Юдин Владимир Евгеньевич
RU2504561C2
ТРУБЧАТЫЙ ИМПЛАНТАТ ОРГАНОВ ЧЕЛОВЕКА И ЖИВОТНЫХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Добровольская Ирина Петровна
  • Попрядухин Павел Васильевич
  • Юдин Владимир Евгеньевич
RU2568848C1
Композиционное полимерное раневое покрытие на основе нановолокон 2017
  • Асадулаев Марат Сергеевич
  • Стояновский Роман Григорьевич
  • Шабунин Антон Сергеевич
  • Лебедева Инна Олеговна
  • Крылов Константин Михайлович
  • Вознюк Игорь Алексеевич
  • Зиновьев Евгений Владимирович
  • Попрядухин Павел Васильевич
  • Добровольская Ирина Петровна
  • Юдин Владимир Евгеньевич
RU2647609C1
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ НАНОВОЛОКОН ИЗ АРОМАТИЧЕСКОГО ПОЛИИМИДА 2015
  • Добровольская Ирина Петровна
  • Попрядухин Павел Васильевич
  • Склизкова Валентина Павловна
  • Юдин Владимир Евгеньевич
  • Матреничев Всеволод Вадимович
  • Светличный Валентин Михайлович
RU2612280C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОПЛАСТИЧНОГО НЕТКАНОГО МАТЕРИАЛА НА ОСНОВЕ МИКРО- И НАНОВОЛОКОН ИЗ АРОМАТИЧЕСКИХ ПОЛИЭФИРИМИДОВ 2020
  • Светличный Валентин Михайлович
  • Ваганов Глеб Вячеславович
  • Мягкова Людмила Аркадьевна
  • Добровольская Ирина Петровна
  • Иванькова Елена Михайловна
  • Чирятьева Александра Евгеньевна
  • Радченко Игорь Леонидович
  • Юдин Владимир Евгеньевич
RU2757442C1
РАСТВОР ДЛЯ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ ХИТОЗАНА, СПОСОБ ПОЛУЧЕНИЯ ГЕМОСТАТИЧЕСКОГО МАТЕРИАЛА ИЗ ЭТОГО РАСТВОРА (ВАРИАНТЫ) И МЕДИЦИНСКОЕ ИЗДЕЛИЕ С ИСПОЛЬЗОВАНИЕМ ВОЛОКОН НА ОСНОВЕ ХИТОЗАНА 2011
  • Внучкин Александр Васильевич
  • Насибулина Евгения Рушановна
  • Забивалова Наталья Михайловна
RU2487701C2
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ВОЛОКОН МЕТОДОМ ЭЛЕКТРОФОРМОВАНИЯ 2012
  • Бокова Елена Сергеевна
  • Коваленко Григорий Михайлович
  • Рылкова Марина Валерьевна
  • Лаврентьев Анатолий Валерьевич
RU2515842C1
Способ изготовления материала для тканеинженерных конструкций и формовочный раствор для его осуществления 2015
  • Бражникова Евгения Николаевна
  • Внучкин Александр Васильевич
  • Анфёрова Марьяна Сергеевна
  • Забивалова Наталья Михайловна
  • Петрусева Мария Юрьевна
RU2622986C2
БИОПОЛИМЕРНОЕ ВОЛОКНО, СОСТАВ ФОРМОВОЧНОГО РАСТВОРА ДЛЯ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ПРИГОТОВЛЕНИЯ ФОРМОВОЧНОГО РАСТВОРА, ПОЛОТНО БИОМЕДИЦИНСКОГО НАЗНАЧЕНИЯ, СПОСОБ ЕГО МОДИФИКАЦИИ, БИОЛОГИЧЕСКАЯ ПОВЯЗКА И СПОСОБ ЛЕЧЕНИЯ РАН 2010
  • Шиповская Анна Борисовна
  • Островский Николай Владимирович
  • Сальковский Юрий Евгеньевич
  • Козырева Екатерина Владимировна
  • Дмитриев Юрий Александрович
  • Белянина Ирина Борисовна
  • Березяк Вадим Владимирович
  • Александрова Ольга Игоревна
  • Кириллова Ирина Васильевна
  • Перминов Дмитрий Валерьевич
RU2468129C2

Иллюстрации к изобретению RU 2 447 207 C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ НАНОВОЛОКОН ИЗ АЛИФАТИЧЕСКИХ СОПОЛИАМИДОВ

Изобретение относится к процессам получения нановолокон методом электроформования, в частности нановолокон с диаметром d=50-4500 нм из алифатических сополиамидов. Получают раствор концентрацией 15-30 мас.% сополимера полигексаметиленадипинамида и полигексаметиленсебацинамида с соотношением 60:40 мас.% в спирто-водной смеси с содержанием этанола 45-97 об.%. Раствор фильтруют и обезвоздушивают. Подачу раствора осуществляют через электрод-фильеру в электрическое поле с напряженностью Е=1,5×104-4,0×105 В/м при расстоянии между электродами 0,1-0,5 м. Нановолокна осаждаются на электроде противоположного знака с диаметром d=50-4500 нм. Волокна образуют материал, обладающий высокой пористостью, паро- и водопроницаемостью, высокой гидрофильностью, биоинертностью. Полученный материал может быть использован для изготовления раневых покрытий, фильтров для очистки жидких и газообразных сред, матриц для пролиферации стволовых клеток. 11 ил., 3 пр.

Формула изобретения RU 2 447 207 C1

Способ получения нановолокон из алифатических сополиамидов методом электроформования, отличающийся тем, что сополимер полигексаметиленадипинамида и полигексаметиленсебацинамида с соотношением 60:40 мас.% растворяют в спиртоводной смеси с содержанием этанола 45-97 об.%; раствор концентрацией 15-30 мас.% фильтруют, обезвоздушивают и подают через электрод-фильеру в электрическое поле с напряженностью Е=1,5×104- 4,0×105 В/м при расстоянии между электродами 0,1-0,5 м; осаждением на электроде противоположного знака получают волокна диаметром d=50-4500 нм.

Документы, цитированные в отчете о поиске Патент 2012 года RU2447207C1

US 2007163217 A1, 19.07.2007
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОВОЛОКОН ИЗ ПОЛИМЕРНОГО РАСТВОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Иржак Ольдрих
  • Санетрник Филип
  • Лукас Давид
  • Котек Вацлав
  • Мартинова Ленка
  • Халоупек Ири
RU2365686C2
СОСТАВЫ ТОНКОГО ВОЛОКНА, СПОСОБЫ ИХ ПОЛУЧЕНИЯ, СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОВОЛОКНИСТОГО МАТЕРИАЛА 2001
  • Чанг Ху Й.
  • Холл Джон Р. Б.
  • Гогинс Марк А.
  • Крофут Дуглас Г.
  • Уик Томас М.
RU2300543C2
Зацепление гусеничной цепи с ведущим колесом 1990
  • Боровских Игорь Юрьевич
  • Полетаев Виктор Анатольевич
  • Полетаева Ольга Анатольевна
  • Демьянов Виктор Васильевич
  • Сальдиванов Петр Уприанович
  • Новоселов Евгений Алексеевич
  • Шашков Николай Фролович
SU1743975A2
WO 2009045042 A1, 09.04.2009
ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ И СПОСОБ ФИЛЬТРОВАНИЯ 2001
  • Гиллингэм Гэри Р.
  • Гогинс Марк А.
  • Уик Томас М.
RU2281146C2

RU 2 447 207 C1

Авторы

Добровольская Ирина Петровна

Попрядухин Павел Васильевич

Юдин Владимир Евгеньевич

Даты

2012-04-10Публикация

2010-10-19Подача