НАНОДИСПЕРСНЫЙ ВЗРЫВЧАТЫЙ СОСТАВ Российский патент 2012 года по МПК C06B45/08 C06B33/08 

Описание патента на изобретение RU2448934C1

Изобретение относится к порошковым взрывчатым составам (ВС) на основе октогена или гексогена, которые могут быть использованы в высокоэнергетических смесевых составах.

Известен взрывчатый гранулированный состав алюмотол ГОСТ 12696-77 и способ его изготовления.

Алюмотол ГОСТ 12696-77-гранулированная смесь тротила с алюминиевым порошком, частицы которого закапсюлированы в гранулах тротила.

Состав алюмотола, мас.%: тротил 85±5 алюминиевый порошок 15±5 размер гранул, мм 2-5 плотность гранул, г/см3 1,5

Недостатком данного ВС является низкая плотность гранул, что приводит к их разрушению при транспортировке и применении. Кроме того, данный состав имеет некоторое количество свободного алюминия, который вызывает сильное пыление при пересыпании.

Известен взрывчатый состав, содержащий по массе 80% гексогена и 20% алюминия (патент RU №2111944, 6 С06В 25/26, 31/28, 47/14, состав A-IX-2, опубликован 27.05.98 г.), принятый за прототип. Основным недостатком этого ВС является высокая пожаро- и взрывоопасность при изготовлении, обусловленная наличием в рецептуре мелкодисперсного алюминия.

Данный состав представляет собой механическую смесь, при изготовлении которой вследствие больших размеров кристаллов гексогена и небольшой удельной поверхности частиц алюминия пластинчатой формы (Sуд∼4000 см2/г) не происходит закрепления кристаллов гексогена на поверхности алюминия.

Все вышесказанное не позволяет получить ВС с равномерным распределением взрывчатого вещества и алюминия в объеме ВС.

Задачей заявленного изобретения является создание взрывчатого состава на основе нанодисперсного октогена или гексогена и нанодисперсного алюминия, безопасного при изготовлении, с равномерным распределением нанодисперсных взрывчатых веществ и алюминия в объеме ВС с высокими детонационными характеристиками.

Поставленная задача решается за счет увеличения удельной поверхности октогена или гексогена с одновременным равномерным осаждением на поверхности алюминия при приготовлении ВС, с исключением механического смешения компонентов, агломерации алюминия, расслоения при транспортировании и хранении.

Цель достигается созданием ВС на основе нанодисперсного октогена или гексогена с размерами частиц 30-80 нм, равномерно распределенного по поверхности нанодисперсного алюминия, используемого в качестве добавки, увеличивающей выделение энергии, с размерами частиц 30-200 нм, а также введением поверхностно-активного вещества (ПАВ) для снижения межфазной поверхностной энергии и обеспечения положительной адсорбции взрывчатого вещества на поверхности алюминия.

Входящие в ВС компоненты взяты в следующих соотношениях, мас.%:

- нанодисперсный октоген или гексоген с размерами

частиц 30-80 нм от 75 до 85

- нанодисперсный алюминий

с размерами частиц 30-200 нм от 15 до 25

- ПАВ, сверх 100% от 1 до 3

Для увеличения энерговыделения ВС на основе нанодисперсного октогена или гексогена в состав введено от 15 до 25% нанодисперсного алюминия, что повышает фугасность, импульс и теплоту взрывчатого превращения, стабилизирует состав продуктов детонации при высоких значениях температуры и давления в детонационной волне.

Увеличение содержания нанодисперсного алюминия в составе свыше 30-35% приводит к агломерации, конденсации частиц алюминия и значительному увеличению времени его сгорания в зоне химической реакции и продуктах детонации.

В результате проведенных экспериментальных работ установлено:

- введение ПАВ в раствор (например, АМДМ-95 или АФ) от 1 до 3% сверх 100% по массе способствует адсорбированию нанодисперсных кристаллов октогена или гексогена на поверхности нанодисперсного алюминия без его агломерации.

Учитывая, что алюминиевые порошки различных марок (1111, ПАП, АСД) обладают высокой пожаро- и взрывоопасностью и для обеспечения безопасности технологического процесса приготовления ВС нанодисперсный алюминий вводят в раствор «октоген или гексоген - растворитель - ПАВ», адсорбируют октоген или гексоген на поверхности алюминия, диспергируют в виде аэрозоля в жидкий азот, что позволяет безопасно получать нанодисперсный ВС с равномерным объемным распределением компонентов.

Приготавливают заявляемый нанодисперсный ВС известным в технике криохимическим (вакуум-сублимационным) способом.

В растворитель при постоянном перемешивании вводят поэтапно октоген или гексоген, ПАВ, нанодисперсный алюминий, диспергируют в виде аэрозоля в жидкий азот, сублимируют растворитель в течение определенного времени.

Используемые при приготовлении нанодисперсного ВС компоненты, изготавливаются в отечественной промышленности.

Примеры реализации:

Пример 1. 25,0 г октогена растворяют в 66,4 г диметилсульфоксида при температуре 50°С, в полученный раствор поэтапно вводят при постоянном перемешивании 1,0 г ПАВ и 5,0 г нанодисперсного алюминия, полученную суспензию с помощью диспергатора в виде аэрозоля вводят при постоянном перемешивании в жидкий азот, который предварительно наливают в металлическую емкость. В емкости после испарения жидкого азота образуется порошок в виде замороженных гранул суспензии «октоген - ПАВ - алюминий». Емкость устанавливают в сублимационную камеру, сублимируют растворитель из замороженных гранул суспензии «октоген - ПАВ - алюминий» при остаточном давлении 1,2 Па и нагревании до 75°С в течение 6-8 часов. Таким способом получают нанодисперсный ВС на основе нанодисперсного октогена.

Пример 2. 25,0 г гексогена растворяют в 88,64 г диметилсульфоксида при температуре 45°С, в полученный раствор поэтапно вводят 1,0 г ПАВ и 5,0 г нанодисперсного алюминия при постоянном перемешивании.

В дальнейшем технологические приемы и параметры выполняют по схеме получения нанодисперсного ВС на основе октогена.

Пример 3. 80 г нанодисперсного октогена и 20 г нанодисперсного алюминия перемешивают в смесителе, в результате чего получают механическую смесь.

Таким же способом получают механическую смесь из нанодисперсного гексогена и нанодисперсного алюминия.

Из полученного криохимическим способом нанодисперсного ВС на основе нанодисперсного октогена и нанодисперсного алюминия были спрессованы шашки плотностью 1,65-1,66 г/см3. Также для сравнения были спрессованы шашки из механической смеси нанодисперсного октогена и нанодисперсного алюминия с такой же плотностью. Содержание компонентов ВС: нанодисперсный октоген - 80%, нанодисперсный алюминий - 20%.

На фиг.1 показаны снимки поверхности шашек, выполненные на электронном микроскопе (фиг.1а - шашки из нанодисперсного ВС, полученного криохимическим способом; фиг.1б - шашки из механической смеси нанодисперсных октогена и алюминия). Как видно из фиг.1б на поверхности шашек из механической смеси большое количество агломерированного алюминия (выделенная область), что свидетельствует о невозможности равномерного распределения компонентов в объеме ВС при механическом смешении компонентов.

В отличие от механической смеси на поверхности шашек из нанодисперсного ВС, полученного криохимическим способом (фиг.1а), нет агломерированного алюминия, что свидетельствует о равномерном распределении компонентов в объеме ВС.

Также в отличие от гексогена или октогена с размерами частиц до 1000 мкм, которые нельзя спрессовать без добавления растворителя или флегматизации, ВС на основе нанодисперсного гексогена или октогена, изготовленные по криохимической технологии, прессуются до плотности 1,8 - 1,9 г/см3 соответственно, которая близка к плотности монокристаллов гексогена или октогена, что способствует росту детонационных характеристик ВС.

Похожие патенты RU2448934C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ОКТОГЕНА ИЛИ ГЕКСОГЕНА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Винников Виктор Павлович
  • Генералов Михаил Борисович
  • Глинский Виктор Петрович
  • Завьялов Виктор Степанович
  • Мацеевич Бронислав Вячеславович
  • Михайлов Владимир Дмитриевич
  • Михайлов Юрий Михайлович
  • Обжогин Андрей Иванович
  • Смирнов Владимир Александрович
  • Трутнев Николай Степанович
RU2343138C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТОЙКИХ СВЕТОЧУВСТВИТЕЛЬНЫХ ВЗРЫВЧАТЫХ СОСТАВОВ И СВЕТОДЕТОНАТОР НА ИХ ОСНОВЕ 2017
  • Луковкин Олег Михайлович
  • Шейков Юрий Валентинович
  • Батьянов Сергей Михайлович
  • Вахмистров Сергей Анатольевич
  • Калашникова Ольга Николаевна
  • Мильченко Дмитрий Владимирович
RU2637016C1
ПОРОХОВОЙ ВЗРЫВЧАТЫЙ СОСТАВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2002
  • Кантор В.Х.
  • Потапов А.Г.
  • Фалько В.В.
  • Текунова Р.А.
  • Гаврилов Н.И.
  • Лапшин В.Н.
RU2226522C2
КУМУЛЯТИВНЫЙ ЗАРЯД 2004
  • Леванов Владислав Анатольевич
  • Левин Владимир Генрихович
  • Потапов Валерий Авдеевич
  • Цивилин Валерий Михайлович
  • Логинов Вадим Николаевич
  • Марочкин Владимир Александрович
RU2298762C2
Способ и исходный продукт для детонационного синтеза поликристаллического алмаза 2020
  • Петров Игорь Леонидович
RU2748800C1
ДЕТОНАЦИОННАЯ РАЗВОДКА, ИНИЦИИРУЕМАЯ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ, И СОСТАВ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА ДЛЯ ИНИЦИИРОВАНИЯ ДЕТОНАЦИОННОЙ РАЗВОДКИ 2019
  • Батьянов Сергей Михайлович
  • Шейков Юрий Валентинович
  • Мильченко Дмитрий Владимирович
  • Луковкин Олег Михайлович
  • Михайлов Александр Сергеевич
  • Руднев Алексей Вадимович
  • Калашникова Ольга Николаевна
RU2728085C1
ВЗРЫВЧАТАЯ СМЕСЬ 2003
  • Кантор В.Х.
  • Потапов А.Г.
  • Фалько В.В.
  • Текунова Р.А.
  • Гаврилов Н.И.
  • Лапшин В.Н.
RU2230724C1
ВЗРЫВЧАТЫЙ СОСТАВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1993
  • Пак З.П.
  • Кривошеев Н.А.
  • Жегров Е.Ф.
  • Фалько В.В.
  • Малкова Н.В.
  • Текунова Р.А.
  • Берковская Е.В.
  • Телепченков В.Е.
RU2086524C1
ВЗРЫВЧАТЫЙ СОСТАВ 2002
  • Смагин Н.П.
  • Белин В.А.
  • Ефремовцев П.Н.
  • Ефремовцев А.Н.
  • Авдеев А.Ф.
RU2237645C1
Способ детонационного синтеза поликристаллического алмаза 2021
  • Петров Игорь Леонидович
RU2774051C1

Иллюстрации к изобретению RU 2 448 934 C1

Реферат патента 2012 года НАНОДИСПЕРСНЫЙ ВЗРЫВЧАТЫЙ СОСТАВ

Изобретение относится к порошковым взрывчатым составам (ВС), которые могут быть использованы в высокоэнегетических смесевых составах. Нанодисперсный взрывчатый состав содержит в качестве взрывчатой основы нанодисперсный октоген или гексоген с размерами кристаллов от 30 до 80 нм в количестве от 75 до 85 мас.%. В качестве добавки, увеличивающей энерговыделение взрывчатого состава, он содержит нанодисперсный алюминий с размерами кристаллов от 30 до 200 нм в количестве от 15 до 25 мас.% и поверхностно-активное вещество от 1 до 3 мас.% сверх 100%, способствующее адсорбированию и равномерному распределению кристаллов октогена или гексогена на поверхности алюминия. Изобретение позволяет исключить механическое смешение компонентов ВС за счет одновременного равномерного осаждения нанодисперсных взрывчатых веществ на поверхности алюминия, с исключением агломерации алюминия и расслоения при транспортировании и хранении, что обеспечивает получение взрывчатого состава с равномерным распределением взрывчатых веществ и алюминия в объеме ВС, безопасного при изготовлении и с высокими детонационными характеристиками. 2 ил., 3 пр.

Формула изобретения RU 2 448 934 C1

Нанодисперсный взрывчатый состав (ВС) с взрывчатой основой, состоящей из октогена или гексогена и алюминия, отличающийся тем, что содержит в качестве взрывчатой основы нанодисперсный октоген или гексоген с размерами частиц не более 30-80 нм в количестве от 75 до 85 мас.%, равномерно распределенные по поверхности нанодисперсного алюминия с размерами частиц от 30 до 200 нм в количестве от 15 до 25 мас.% и в объеме ВС, а также содержит поверхностно-активное вещество от 1 до 3 мас.% свыше 100%.

Документы, цитированные в отчете о поиске Патент 2012 года RU2448934C1

ВЗРЫВЧАТЫЙ СОСТАВ 2006
  • Авенян Владимир Амбарцумович
  • Александров Николай Александрович
  • Ларюшина Нина Николаевна
RU2315742C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНОГО ОКТАНИТА 2005
  • Лашков Валерий Николаевич
  • Потанина Нина Валентиновна
RU2281931C1
ВЗРЫВЧАТАЯ КОМПОЗИЦИЯ 2005
  • Конашенков Александр Иванович
  • Спорыхин Александр Иванович
  • Вареных Николай Михайлович
  • Воронков Сергей Иванович
RU2278099C1
ВЗРЫВЧАТЫЙ СОСТАВ ДЛЯ СКВАЖИН 2001
  • Сулимов А.А.
  • Сукоян М.К.
  • Борисов А.А.
  • Ермолаев Б.С.
  • Михайлов Ю.М.
  • Королев В.П.
  • Бибнев Н.М.
  • Баскаков Ю.М.
RU2190585C1
US 4376083 A, 08.03.1983
Групповой источник питания с искробезопасными выходами 1987
  • Рой Виктор Федорович
  • Бурма Николай Гаврилович
  • Иохельсон Зиновий Маркович
SU1469182A1
WO 9304019 A1, 04.03.1993
US 3266957 A, 16.08.1966
US 4425170 A, 10.01.1984.

RU 2 448 934 C1

Авторы

Завьялов Виктор Степанович

Смирнов Владимир Александрович

Винников Виктор Павлович

Мацеевич Бронислав Вячеславович

Генералов Михаил Борисович

Трутнев Николай Степанович

Глинский Виктор Петрович

Павловец Георгий Яковлевич

Даты

2012-04-27Публикация

2010-08-16Подача