Изобретение относится к устройствам спутника, служащим для преобразования солнечной энергии в электрическую, в частности к способу изготовления подложки панели солнечной батареи, состоящей из струн.
Наиболее близким по технической сущности является патент RU 2068212, согласно которому подложка солнечной батареи, взятая за прототип, выполнена из сетчатого материала, изготовленного из стеклонитей методом уточно-филейного переплетения, обработанного кремнийорганическим лаком.
Недостатками данной подложки являются:
- значительная масса сетчатой подложки;
- структура сетчатой подложки не соответствует размерам фотоэлектрических преобразователей;
- сетчатая подложка из стеклонитей отличается невысокой стойкостью к истиранию;
- сетчатая подложка из стеклонитей не обеспечивает требований по чистоте, являясь существенным источником механических частиц в виде стеклянных волокон в процессе изготовления подложки, установки на каркас, проведения виброиспытаний изделий, транспортирования изделий и на участке выведения.
В качестве прототипа способа изготовления подложки солнечной батареи взят способ, раскрытый в патенте RU 2068212. Согласно данному способу подложку выполняют из сетчатого материала методом уточно-филейного переплетения из стеклонитей, растягивают на каркасе при удельной нагрузке 0,2-0,7 кгс/пог.см, обрабатывают кремнийорганическим лаком и производят отжиг сетчатого материала в вакууме при температуре (90-120)°C в течение 2-5 ч. Обработка сетчатой подложки кремнийорганическими лаками 139-240 и 136-320 позволяет снизить выделение газообразных веществ с подложки при воздействии факторов космического пространства (ФКП). Отжиг пропитанной лаком сетчатой подложки в вакууме при температуре (90-120)°C уменьшает газовыделение с подложки.
Сетчатая подложка, изготовленная таким способом, обеспечивает достаточный просвет подложки солнечной батареи, не нарушающий тепловой режим.
Основными недостатками данного способа являются:
- значительный расход лака для пропитки сетчатой подложки;
- сетчатая подложка из стеклонитей является существенным источником механических частиц в виде стеклянных волокон в процессе изготовления подложки, установки на каркас, проведения виброиспытаний изделий, транспортирования изделий и на участке выведения.
Целью изобретения является устранение указанных недостатков и создание легкой, прочной, износостойкой, не пылящей струнной подложки, обеспечивающей работоспособность панелей солнечной батареи при длительном воздействии ФКП.
Технический результат достигается за счет того, что подложку панели солнечной батареи, состоящую из сетчатого материала, пропитанного связующим составом, изготавливают из арамидного шнура. При изготовлении подложки панели солнечной батареи струны сетчатого материала выполняют из арамидного шнура, сначала его обезгаживают, потом нарезают в требуемый размер, пропитывают связующим составом, например кремнийорганическим лаком, выполняют закрутку, повторяют пропитку, растягивают пропитанный шнур, затем сушат. При этом шнур имеет оплетку и сердечник с разрывной нагрузкой шнура - не менее 20 кгс; готовые струны до установки на каркас выдерживают в нормальных условиях под нагрузкой (25-70)% от разрывной, потом их устанавливают на каркас с шагом, исходя из размеров ФП, шнур обезгаживают в вакууме 10-5-10-6 мм рт.ст. при температуре (120-150)°C не менее 12 ч, закрутку выполняют каждого конца шнура из расчета (3-7)° оборота на 1 мм длины, в натянутом состоянии одновременно с 2-х концов в противоположные стороны, пропитанный шнур растягивают с усилием (25-70)% от разрывной нагрузки, после повторной пропитки шнур выдерживают в нормальных условиях не менее 2 ч, а сушку производят при температуре (120-150)°C не менее 5 ч.
При этом выбор арамидного шнура обусловлен его высокой прочностью, низким удельным весом, невысоким относительным удлинением при разрыве, достаточной эластичностью, высокой термо- и радиационной стойкостью, низкой ползучестью под нагрузкой, высокой износостойкостью. Арамидный шнур сочетает в себе лучшие свойства металлокорда - высокие показатели по прочности и модулю - с уникальными свойствами полиамидных нитей: низким удельным весом, сопротивлением утомлению. Таким образом, благодаря применению арамидного шнура достигается высокая прочность и жесткость струн при малой массе, стабильность размеров струнной подложки.
Выбор необходимого типа арамидного шнура производят исходя из конкретных требований по нагрузке.
Например, разрывная нагрузка не менее 20 кгс выбрана исходя из величины внешних сил, действующих на струну (массы фотопреобразователей (ФП), массы кабелей, величины нагрузки, действующей на струну на участке выведения).
Из ассортимента арамидных шнуров выбирают шнуры, отвечающие техническим требованиям.
Например, шнур диаметром менее 0,5 мм не обеспечивает требуемых механических свойств подложки (прочность, жесткость), шнур диаметром более 0,7 мм обладает большей массой, требует большего усилия натяжения, большей жесткости рамы, что влечет за собой нежелательное увеличение массы конструкции.
Таким образом наиболее подходящими являются арамидные шнуры диаметром от 0,5 до 0,7 мм.
Сущность изобретения поясняется диаграммами, где показаны кривые растяжения до разрыва шнура в состоянии поставки, после обезгаживания и готовой струны (фиг.1, кривые 1-3 соответственно).
В качестве примера осуществления приведен способ изготовления подложки солнечной батареи, в котором в качестве струн материала подложки используют арамидный шнур с диаметром 0,5-0,7 мм и с разрывной нагрузкой не менее 20 кгс, состоящий из оплетки и сердечника. Все параметры осуществления (температура, время, величина нагрузки и др.) даны как рекомендуемые для данного типа арамидных шнуров.
В предпочтительном воплощении изобретения шнур предварительно обезгаживают в вакууме 10-5-10-6 мм рт.ст. при температуре (120-150)°C не менее 12 ч; нарезают в требуемый размер струн, пропитывают связующим составом, например кремнийорганическим лаком 136-320; выполняют закрутку каждого конца шнура из расчета (3-7)° оборота на 1 мм длины, в натянутом состоянии одновременно с 2-х концов в противоположные стороны; повторяют пропитку лаком; растягивают пропитанный шнур с усилием (25-70)% от разрывной нагрузки; выдерживают в нормальных условиях не менее 2 ч; сушат при температуре (120-150)°C не менее 5 ч, готовые струны до установки на каркас выдерживают под нагрузкой (25-70)% от разрывной; готовые струны устанавливают на каркас с шагом, исходя из размеров фотоэлектрических преобразователей.
Операция обезгаживания исходного шнура снижает его параметры газовыделения до требуемых критериев за счет удаления летучих веществ и воды и способствует улучшению пропитки и адгезии лака. Вакуумный режим обезгаживания наиболее предпочтителен, т.к. операция обезгаживания на воздухе более длительная и сопровождается протеканием окислительных процессов.
Закрутка шнура способствует более глубокому проникновению лака, уменьшает деформацию готовой струны в зоне рабочих нагрузок, а повторная пропитка позволяет зафиксировать состояние шнура после закрутки. Количество кручений шнура выбирается к конкретному варианту исполнения.
По сравнению с прототипом порядок выполнения действий по изготовлению подложки изменен и существенно дополнен.
Струны, изготовленные таким способом, сохраняют высокую механическую прочность, эластичность, но отличаются улучшенными упругими свойствами в зоне рабочих нагрузок (см. фиг.1, диаграммы «нагрузка-деформация» при растяжении до разрыва исходного (1), обезгаженного шнура (2) и готовой струны (3)).
Данный способ изготовления струн с учетом условий их выдержки до установки на каркас под нагрузкой (25-70)% от разрывной позволяет компенсировать воздействие температурных деформаций материала струн, обеспечивая в дальнейшем отсутствие провисания струнной подложки на каркасе при воздействии отрицательных температур в процессе эксплуатации панелей солнечной батареи.
Данный способ реализуется следующими устройствами:
- Для обезгаживания шнуров в вакууме 10-5-10-6 мм рт.ст. используют термобарокамеру.
- Для растягивания струн в горизонтальном положении используют технологическую оснастку.
- Пропитку струн лаком выполняют вручную с помощью тампона из поролона, обернутого бязью, при этом обжимая струну тампоном. Первую пропитку можно осуществить окунанием.
- Для закрутки струн пользуются дрелью либо выполняют вручную.
Сушку струн на оснастке проводят в термокамере.
На предприятии разработаны и изготовлены опытные образцы струн, проведены испытания тестовых каркасов со струнной подложкой. Результаты показали высокую стойкость струн к факторам эксплуатации (циклическое изменение температуры в вакууме от минус 150°C до 130°C, воздействие ионизирующего излучения поглощенной дозой до 6×106 Гр, отсутствие провисания струн на имитаторах каркасов при воздействии экстремальных положительных и отрицательных температур).
Изготовленная таким образом подложка панели СБ является универсальной, позволяющей компенсировать воздействие температурных деформаций на алюминиевом или углепластиковом каркасах, значительно снижает вес панели, а выбор способа крепления струн к каркасу и возможность располагать их с шагом в зависимости от размеров фотоэлектрических преобразователей способствуют увеличению площади размещения фотоэлектрических преобразователей на панели и соответственно мощности СБ.
Из известных авторам патентно-информационных источников не известна совокупность признаков, сходных с признаками заявляемого объекта.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ПОДЛОЖКИ СОЛНЕЧНОЙ БАТАРЕИ | 1993 |
|
RU2068212C1 |
ПАНЕЛЬ СОЛНЕЧНОЙ БАТАРЕИ | 2005 |
|
RU2297077C1 |
ПАНЕЛЬ СОЛНЕЧНОЙ БАТАРЕИ | 2014 |
|
RU2575182C1 |
СЕТЬ И СПОСОБ ВЯЗАНИЯ СЕТИ | 2000 |
|
RU2158792C1 |
СОЛНЕЧНАЯ БАТАРЕЯ | 2007 |
|
RU2358208C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МОДУЛЯ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ | 2021 |
|
RU2760378C1 |
СТЕКЛОПЛАСТИКОВЫЙ СОТОВЫЙ ЗАПОЛНИТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2009 |
|
RU2398798C1 |
СОЛНЕЧНАЯ БАТАРЕЯ | 2005 |
|
RU2297076C1 |
БРОНЕВАЯ ПАНЕЛЬ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2004 |
|
RU2268453C1 |
АРАМИДНАЯ БУМАГА, ПОДХОДЯЩАЯ ДЛЯ ИСПОЛЬЗОВАНИЯ В ЭЛЕКТРОННЫХ ОБЛАСТЯХ ПРИМЕНЕНИЯ | 2017 |
|
RU2768773C2 |
Изобретение относится к солнечным батареям, служащим для преобразования солнечной энергии в электрическую. Подложка панели солнечной батареи состоит из сетчатого материала, изготовленного из струн, пропитанных связующим составом, согласно изобретению струны выполнены из арамидного шнура. Способ изготовления подложки панели солнечной батареи осуществляют путем пропитывания струн сетчатого материала связующим составом и обезгаживания в вакууме. Струны выполняют из арамидного шнура, сначала его обезгаживают, потом нарезают в требуемый размер, пропитывают связующим составом, например кремнийорганическим лаком, выполняют закрутку, повторяют пропитку, растягивают пропитанный шнур, затем сушат. Изготовленная таким образом подложка панели солнечной батареи является универсальной, позволяющей компенсировать воздействие температурных деформаций на алюминиевом или углепластиковом каркасах, значительно снижает вес панели. 2 н.п. ф-лы, 1 ил.
1. Подложка панели солнечной батареи, состоящая из сетчатого материала, изготовленного из струн, пропитанных связующим составом, отличающаяся тем, что струны выполнены из арамидного шнура.
2. Способ изготовления подложки панели солнечной батареи путем пропитывания струн сетчатого материала связующим составом и обезгаживания в вакууме, отличающийся тем, что струны выполняют из арамидного шнура, сначала его обезгаживают, потом нарезают в требуемый размер, пропитывают связующим составом, например кремнийорганическим лаком, выполняют закрутку, повторяют пропитку, растягивают пропитанный шнур, затем сушат.
СПОСОБ ИЗГОТОВЛЕНИЯ ПОДЛОЖКИ СОЛНЕЧНОЙ БАТАРЕИ | 1993 |
|
RU2068212C1 |
ПРЕОБРАЗОВАТЕЛЬ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ | 1991 |
|
RU2013713C1 |
СОЛНЕЧНАЯ БАТАРЕЯ | 2003 |
|
RU2242824C1 |
Рейтер для печатных пластинок адресопечатающих машин | 1928 |
|
SU12468A1 |
JP 2003332605 A, 21.11.2003. |
Авторы
Даты
2012-04-27—Публикация
2010-06-18—Подача