Изобретение относится к физике магнетизма и может быть использовано для изучения магнитных свойств ферромагнетиков - их магнитной вязкости и зависимости магнитной восприимчивости от напряженности внешнего магнитного поля. Эти характеристики являются важными для построения энергетических устройств.
Одним из интересных свойств ферромагнитных материалов является их так называемая магнитная вязкость, магнитное последействие - отставание по времени намагниченности ферромагнетика от изменения напряженности магнитного поля. В наиболее простых случаях изменение намагниченности ДМ в зависимости от времени t описывается формулой
где М0 и M∞ - соответственно значения намагниченности непосредственно после изменения напряженности Н магнитного поля в момент t=0 и после установления нового равновесного состояния, τ - константа, характеризующая скорость процесса и называемая постоянной времени релаксации. Значение τ зависит от природы магнитной вязкости и в различных материалах может изменяться от 10-9 секунды до нескольких десятков часов в зависимости от технологии изготовления ферроматериалов и их структуры [1-3].
Особенное значение имеет оценка величины магнитной вязкости - постоянной τ - при разработке энергетических устройств, предложенных автором [4-5], в которых эта величина определяет динамику работы этих устройств и возможности оптимизации их работы по критерию удельной выходной мощности с единицы объема используемого ферроматериала.
Известны различные измерители магнитной вязкости ферроматериалов [6, 8].
Ближайшим техническим решением (прототипом) для заявляемого способа является «Способ измерения магнитной вязкости ферроматериалов», известный из патента РФ №2357240, опубликованного в бюллетене №15 от 27.05.2009 года [7], состоящий в том, что на основе ферритового кольца образуют колебательный контур высокочастотного генератора, часть ферритового кольца, например его половину, помещают в непрерывно действующее постоянное магнитное поле - поле подмагничивания с напряженностью, соответствующей максимальному значению относительной магнитной проницаемости этой части ферритового кольца, а также воздействуют на указанную часть ферритового кольца дополнительным импульсным магнитным полем, приводящим к глубокому насыщению этой части ферроматериала ферритового кольца, при котором относительная магнитная проницаемость последнего уменьшается более чем на порядок, относительно ее максимального значения, измеряют интервал времени между последовательным возникновением двух фиксированных частот на выходе высокочастотного генератора, на которые предварительно настраивают два высокочастотных компаратора, связанные с высокочастотным генератором, определяют с помощью датчика Холла постоянную времени установления импульсного магнитного поля, действующего на указанную часть ферритового кольца, после чего рассчитывают искомую постоянную магнитной вязкости ферроматериала.
Недостатком известного способа является временная задержка импульсного перемагничивания ферромагнитного сердечника электромагнита в связи с действующими в его обмотке постоянным и импульсным токами.
Указанный недостаток устранен в заявляемом способе.
Целью изобретения является повышение точности измерения магнитной вязкости ферромагнетиков, выполненных в форме вращающегося кольца, часть которого помещена в локализованное насыщающее магнитное поле. Другой целью изобретения является возможность регистрации распределения магнитной восприимчивости внутри магнитного зазора с насыщающим магнитным полем.
Указанная цель достигается в заявляемом способе измерения магнитной вязкости ферромагнетиков, выполненных в виде кольца, часть которого помещена в магнитный зазор электромагнита, связанного с регулируемым источником постоянного тока, а также содержащем блок вычисления и индикации, отличающимся тем, что ферромагнитное кольцо с радиусом R вращают относительно магнитного зазора электромагнита длиной L с угловой скоростью Ω, и в течение интервала времени Δt=L/Ω R измеряют значения величины магнитной восприимчивости ферромагнетика χ(x) внутри магнитного зазора электромагнита на отрезке 0≤x≤L с помощью электромагнитного датчика, обмотка которого входит в состав колебательного контура высокочастотного генератора, для чего электромагнитный датчик перемещают вдоль дуги окружности, соосной с ферромагнитным кольцом внутри магнитного зазора электромагнита, а измерение величины магнитной восприимчивости χ(x) производят в блоке вычисления и индикации по изменению частоты в высокочастотном генераторе, при этом значение постоянной релаксации τ магнитной вязкости ферромагнитного кольца определяют по виду экспоненциально спадающего распределения магнитной вязкости χ(x) на участке X*≤x(x)≤L, где X* - координата, соответствующая максимуму величины магнитной восприимчивости исследуемого ферромагнетика χMAX, по формуле τ=(L-X*)/Ω R ln(χMAX/χMIN), где χMIN - минимальное значение магнитной восприимчивости ферромагнетика в конце магнитного зазора электромагнита при х=L, причем магнитное поле в магнитном зазоре электромагнита выбирают однородным и насыщающим.
Достижение цели изобретения объясняется изменением частоты колебательного контура высокочастотного генератора магнитной связью магнитного датчика с краем ферромагнитного кольца с изменяющейся магнитной восприимчивостью последнего на участке 0≤x≤L за счет изменения индуктивности катушки магнитного датчика в его различных положениях внутри магнитного зазора электромагнита, а экспоненциальное изменение величины магнитной восприимчивости в однородном насыщающем магнитном поле объясняется свойством запаздывания намагниченности ферромагнетика от скачкообразно изменяющейся напряженности магнитного поля при x≤0 и при x≥L, когда в промежутке 0≤x≤L напряженность магнитного поля является насыщающей и однородной HHAC=const (x). Картина распределения магнитной восприимчивости χ(x) является статической при заданном вращении ферромагнитного кольца с угловой скоростью Ω.
Действие заявляемого способа поясняется реализующим его устройством, представленным на рис.1 и включающим следующие элементы и блоки:
1 - ферромагнитное кольцо из исследуемого ферромагнетика,
2 - ось вращения ферромагнитного кольца 1,
3 - синхронный электродвигатель с осью вращения 2,
4 - трехфазный генератор с регулируемой частотой Ω,
5 - электромагнит с магнитным зазором,
6 - обмотка электромагнита 5,
7 - регулируемый источник постоянного тока,
8 - магнитный датчик,
9 - обмотка магнитного датчика 8 - индуктивность колебательного контура,
10 - перестраиваемый конденсатор колебательного контура,
11 - высокочастотный генератор частоты ω1,
12 - перестраиваемый по частоте опорный высокочастотный генератор частоты ω2,
13 - смеситель, выделяющий разностную частоту Δω=ω2-ω1,
14 - блок вычисления и индикации.
На рис.2 представлена часть устройства, указанного на рис.1, в линейном представлении, на котором указаны геометрические параметры магнитного зазора электромагнита 5, внутри которого расположена часть ферромагнитного кольца 1, и магнитный датчик с его обмоткой (8+9). Скорость протяжки ферроматериала в магнитном зазоре электромагнита равна V=Ω R. Указано положение магнитного датчика на координате x и длина магнитного зазора L.
На рис.3 изображена эпюра распределения величины магнитной восприимчивости χ(x) в различных положениях магнитного датчика 8 внутри магнитного зазора электромагнита 5: начальная χНАЧ при x=0, максимальная χMAX при x=X* и минимальная χMIN при x=L с учетом вращения ферромагнитного кольца с угловой скоростью Ω.
На рис.4 представлена модифицированная схема устройства, дополненная следующими узлами:
15 - шаговый привод перемещения магнитного датчика 8,
16 - датчик угла.
На рис.5 показан диапазон перемещения магнитного датчика 8 относительно боковой грани ферромагнитного кольца 1 - от начального углового положения φНАЧ, соответствующего значению x=0, и конечного φКОН, соответствующего значению x=L.
На рис.6а-6г даны распределения магнитной восприимчивости при различных значениях Н и Ω.
Рассмотрим операционную сущность заявляемого способа на примере работы реализующего его устройства.
В соответствии с кривой Столетова магнитная восприимчивость ферромагнетика в отсутствие магнитного поля равна начальному значению χНАЧ. По мере роста напряженности внешнего магнитного поля Н магнитная восприимчивость сначала также возрастает и доходит до максимального значения χMAX, а затем начинает уменьшаться. Магнитная индукция В (Н) или, что то же, намагниченность ферромагнетика при росте напряженности магнитного поля доходит до насыщения и при парапроцессе остаются практически постоянной В (HНАС)≈const (Н). Поскольку индукция определяется формулой B=µo (χ+1) Н, где µo=1,256.10-6 Гн/м - абсолютная магнитная проницаемость вакуума, то при Н>>HНАС ясно, что с ростом HНАС магнитная восприимчивость соответственно уменьшается, так что всегда соблюдается приблизительное равенство χHНАС≈const (Н). Таким образом, распределение магнитной восприимчивости ферромагнетика при вращении ферромагнитного кольца (рис.1 и рис.2) с круговой частотой Ω, то есть при линейной скорости протяжки V=Ω R, имеет вид, указанный на рис.3.
На промежутке X*≤x≤L магнитная восприимчивость экспоненциально уменьшается от значения χМАХ до значения χMIN с учетом (1) согласно выражению:
где Δt*=(L-X*)/Ω R, а τ - постоянная релаксации магнитной вязкости - искомая величина. Измеряя значения χМАХ и χMIN и зная величины радиуса R ферромагнитного кольца 1 и угловой скорости его вращения Ω, легко найти искомую величину τ согласно (2) в виде выражения:
Если так подобрать угловую скорость Ω вращения ферромагнитного кольца 1, что отношение χMAX/χMIN=e=2,71 - основание натурального логарифма, то из (3) получим простое соотношение:
Например, при (L-X*)/2 π R=0,1 при Ω=2 π F, где F - частота вращения ферромагнитного кольца, для значения τ* согласно (4) получим τ*=1/10 F. Следовательно, при частоте вращения или, что то же, частоте колебаний, вырабатываемых в трехфазном генераторе 4 с регулируемой частотой, равной F=Ω/2π=50 Гц, постоянная релаксации τ*=0,002 с=2 мс. При этом отношение χMAX/χMIN =2,71 означает, что при χMAX=1000 при x=X* минимальное значение магнитной восприимчивости χMIN=369 при x=L. Если магнитопровод магнитного датчика 8 имеет относительную магнитную проницаемость µ>>χMAX, а зазор d между полюсами магнитного датчика 8 и боковой гранью ферромагнитного кольца 1 минимально возможный, то индуктивность обмотки 9 в различных положениях магнитного датчика будет линейно зависеть от величины магнитной восприимчивости χ(x) испытуемого ферромагнетика.
Известно, что собственная частота колебательного контура ω1=1/(LC)1/2, где индуктивность L выражается соотношением L(x)=k χ(x), где k - размерный коэффициент пропорциональности [Гн], следовательно, круговая частота колебаний в высокочастотном генераторе 11, в первом приближении, обратно пропорциональна корню квадратному из магнитной проницаемости ферромагнетика χ(x).
С целью увеличения крутизны характеристики измерителя χ(x) в устройстве использованы перестраиваемый по частоте опорный высокочастотный генератор 12 частоты ω2 и смеситель 13, выделяющий разностную частоту Δω=ω2-ω1. При этом магнитный датчик 8 устанавливают в положение х=0, то есть в начале магнитного зазора электромагнита 5, при котором χ(0)= χНАЧ, и в высокочастотном генераторе 11 возбуждаются колебания ω1(0), на частоту которых настраивают опорный высокочастотный генератор 12, так что имеем ω2=ω1(0). Поэтому при x>0 частота ω1(x) сначала уменьшается в диапазоне 0≤x≤X*, а затем возрастает в диапазоне X*≤x≤L. При этом на выходе смесителя 13 разностная частота Δω=|ω2-ω1|=|ω1(0)-ω1(x)|. Знак абсолютной величины используется в этом выражении из-за возможности событий, когда ω2<ω1 или ω2>ω1. По полученному значению разностной частоты Δω в блоке вычисления и индикации 14 находят и само распределение χ(x) во всем диапазоне 0≤x≤L по заданной программе.
С помощью регулируемого источника 7 постоянного тока J образуют в магнитном зазоре электромагнита 5 насыщающее магнитное поле с напряженностью HНАС, при увеличении которого уменьшается расстояние X* и одновременно возрастает в динамике вращения ферромагнитного кольца намагниченность той части ферромагнитного кольца, которая имеет координату x=X*, что связано с тем, что магнитная восприимчивость этой части ферромагнитного кольца (его дифференциальное сечение dx) максимальна, и тогда B*=µo(χMAX+1) HНАС*, где HНАС* - напряженность насыщающего магнитного поля, существенно превышающая напряженность HНАС, при которой достигается насыщение ферромагнетика (в начале парапроцесса). Однако с помощью магнитного датчика такая динамическая «сверхнамагниченность» не определяется, хотя ее появление важно для объяснения действия устройств магнитной энергетики [4].
Регулируя частоту Ω в трехфазном генераторе 4 распределение χ(x) соответственно трансформируется, что позволяет провести статистическое усреднение искомой величины постоянной релаксации τ магнитной вязкости ферромагнетика, из которого изготовлено ферромагнитное кольцо 1.
Значения частот Ω и Δω, тока J (или напряженности Н) поступают на входы блока вычисления и индикации 14, и эти данные обрабатываются соответствующей программой для вычисления значения τ. С помощью блока 14 автоматически или вручную оператором с клавиатуры этого блока можно управлять изменением частоты Ω и тока подмагничивания J для накопления данных, которые запоминаются в базе данных. В качестве блока вычисления и индикации может быть использован персональный компьютер с монитором, на экране которого выводятся графики распределений χ(x) и таблицы получаемых результатов. Сигналы управления трехфазным генератором с регулируемой частотой 4 и регулируемым источником постоянного тока 7 поступают с управляющих выходов блока измерения и индикации 14.
Модификацией рассмотренного устройства, реализующего способ, является схема, представленная на рис.4. Эта схема содержит все те же элементы и блоки и дополнена шаговым приводом 15 с датчиком угла 16 перемещения магнитного датчика 8 относительно боковой поверхности ферромагнитного кольца 1, как это видно на рис.5. Диапазон углов φ перемещения магнитного датчика определяется неравенствами φНАЧ≤φ≤φКОН, адекватными неравенствам 0≤x≤L.
Шаговым приводом 15 управляет по соответствующей программе блок вычисления и индикации 14, на дополнительный вход которого поступает информация о текущем значении угла φ с датчика угла 16. Это позволяет полностью автоматизировать процесс регистрации распределения магнитной восприимчивости χ(x) ферромагнетика и статистического расчета постоянной релаксации τ (постоянной магнитной вязкости).
При напряженности магнитного поля внутри магнитного зазора, равной Н* при неподвижном ферромагнитном кольце (Ω=0), магнитная восприимчивость χ ферромагнетика достигает своего максимального значения χMAX. Если теперь начать вращать ферромагнитное кольцо (Ω>0), то достижение максимальной магнитной восприимчивости χMAX именно в конце магнитного зазора при x=L возможно при определенной угловой скорости, обозначаемой как Ω*. Тогда при Ω<Ω* распределение χ(x) имеет вид, указанный на кривой рис.6а, при Ω=Ω* - кривой на рис.6б, а при Ω>Ω* - кривой на рис.6в.
Если напряженность магнитного поля Н=0 внутри магнитного зазора электромагнита, то при любом значении угловой скорости Ω>О кривая распределения χ(x) показана на рис.6г.
Если Н>Н*, то при Ω=Ω* вращения ферромагнитного кольца распределение χ(x) в идеализированном случае представляется кривой линией, как на рис.3.
При некотором эксцентриситете установки ферромагнитного кольца 1 на оси вращения 2 величина зазора d между боковой поверхностью ферромагнитного кольца и полюсами магнитного датчика 8 периодически изменяется с частотой F. Для надежной работы устройства следует обеспечить постоянство зазора d(φ), так как в противном случае будет изменяться распределение χ(x) во времени, то есть возникает устойчивый во времени спектр распределений S{χ(x)}, статистическое усреднение которого возлагается на работу блока 14 (персонального компьютера). Причем быстродействие расчетов искомой величины τ должно быть достаточно высоким, чтобы успевать отслеживать компоненты этого спектра S{χ(x)}.
Выше указывалось, что характер распределения в промежутке X*≤x≤L является экспоненциальным. На самом деле распределение χ(x) является более сложным, поскольку в диапазоне 0≤x≤X* магнитная восприимчивость в магнитном поле Н>>Н* одновременно быстро возрастает, но одновременно медленнее падает, что сказывается на отличии кривой на нисходящем участке распределения χ(x) (см. рис.3) от экспоненциальной. Поэтому важно с помощью данного устройства уточнить реальный характер распределения, что, в частности, позволяет более точно определить центр намагниченности ферромагнетика, находящегося внутри магнитного зазора электромагнита 5. Этот центр является смещенным к началу зазора от его центра. Разнесение центра намагниченности ферромагнетика от центра магнитного зазора с однородным насыщающим магнитным полем приводит к возникновению механической силы втягивания ферромагнетика, действующей непрерывно во времени и в направлении вращения ферромагнитного кольца. При неподвижном ферромагнитном кольце такая сила не возникает. Кроме того, как показывает анализ, действие силы максимально при Ω=Ω*. Поддержание вращательного движения ферромагнитного кольца объясняется проявлением магнитокалорического эффекта в резко размагничивающемся ферромагнетике, выходящем из магнитного зазора с насыщающим магнитным полем. Глубокое насыщение ферромагнетика уменьшает, в силу фазового перехода первого рода, его удельную теплоемкость, причем процессы нагревания ферромагнетика при его намагничивании и охлаждения при размагничивании из его глубокого насыщения неравновесные. Восполнение тепловых потерь в ферромагнетике (уменьшения его внутренней энергии) осуществляется притоком тепловой энергии из внешней среды, что согласуется с законом сохранения энергии. Величина магнитокалорической активности ферромагнетика является доминирующей характеристикой для разработки магнитных двигателей, что требует проведения соответствующей разработки ферровещества.
С помощью заявляемого способа и реализующего его устройства можно проводить экспресс-анализ ферромагнитного вещества, подбирая различного рода присадки для изменения постоянной релаксации и приведения ее к диапазону 0,5…2 мс, предпочтительному для разработки магнитовязких источников энергии.
Разработка подходящих ферроматериалов может быть проведена в Институте ферритов в Санкт-Петербурге по параметрам магнитокалорической активности и магнитной вязкости.
Литература
1. Kronmiiller Н., Nachwirkung in Kerromagnetika, В. - [u.a.], 1968.
2. Вонсовский С.В., Магнетизм, М., 1971.
3. Мишин Д.Д., Магнитные материалы, М., 1981.
4. Меньших О.Ф., Способ получения энергии и устройство для его реализации. Патент РФ №2332778, опубл. в бюлл. №24 от 27.08.2008.
5. Меньших О.Ф., Устройство стабилизации частоты генератора, Патент РФ №2368073, опубл. в бюлл. №26 от 20.09.2009.
6. Меньших О.Ф., Прибор для измерения магнитной вязкости ферромагнетиков, Патент РФ №2338216, опубл. в №31 от 10.11.2008.
7. Меньших О.Ф., Способ измерения магнитной вязкости ферроматериалов. Патент РФ №2357240, опубл. в №15 от 27.05.2009.
8. Меньших О.Ф., Измеритель магнитной вязкости ферромагнетиков, Патент РФ №2357241, опубл. в №15 от 27.05.2009.
Источники патентной информации
RU 2309527 С1, 27.10.2007. RU 2291546 C1, 10.01.2007.
JP 20011255305 A, 21.09.2001. JP 63180851 A, 25.07.1988.
Заявлен способ измерения магнитной вязкости ферромагнетиков. Часть ферромагнетика, выполненного в виде кольца, помещена в магнитный зазор электромагнита. Кольцо вращают относительно магнитного зазора. В течение интервала времени измеряют значения величины магнитной восприимчивости ферромагнетика внутри магнитного зазора электромагнита с помощью электромагнитного датчика, обмотка которого входит в состав колебательного контура высокочастотного генератора. При этом электромагнитный датчик перемещают вдоль дуги окружности, соосной с ферромагнитным кольцом внутри магнитного зазора электромагнита. Измерение величины магнитной восприимчивости производят в блоке вычисления и индикации по изменению частоты в высокочастотном генераторе. Технический результат - повышение точности измерения магнитной вязкости ферромагнетиков. 6 ил.
Способ измерения магнитной вязкости ферромагнетиков, выполненных в виде кольца, часть которого помещена в магнитный зазор электромагнита, связанного с регулируемым источником постоянного тока, а также содержащий блок вычисления и индикации, отличающийся тем, что ферромагнитное кольцо с радиусом R вращают относительно магнитного зазора электромагнита длиной L с угловой скоростью Ω, и в течение интервала времени Δt=L/Ω R измеряют значения величины магнитной восприимчивости ферромагнетика χ(x) внутри магнитного зазора электромагнита на отрезке 0≤x≤L с помощью электромагнитного датчика, обмотка которого входит в состав колебательного контура высокочастотного генератора, для чего электромагнитный датчик перемещают вдоль дуги окружности, соосной с ферромагнитным кольцом внутри магнитного зазора электромагнита, а измерение величины магнитной восприимчивости χ(x) производят в блоке вычисления и индикации по изменению частоты в высокочастотном генераторе, при этом значение постоянной релаксации τ магнитной вязкости ферромагнитного кольца определяют по виду экспоненциально спадающего распределения магнитной вязкости χ(x) на участке X*≤χ(x)≤L, где X* - координата, соответствующая максимуму величины магнитной восприимчивости исследуемого ферромагнетика χMAX, по формуле τ=(L-X*)/Ω R ln (χMAX/χMIN), где χMIN - минимальное значение магнитной восприимчивости ферромагнетика в конце магнитного зазора электромагнита при x=L, причем магнитное поле в магнитном зазоре электромагнита выбирают однородным и насыщающим.
ИЗМЕРИТЕЛЬ МАГНИТНОЙ ВЯЗКОСТИ ФЕРРОМАГНЕТИКОВ | 2007 |
|
RU2357241C1 |
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОЙ ВЯЗКОСТИ ФЕРРОМАТЕРИАЛОВ | 2007 |
|
RU2357240C1 |
ПРИБОР ДЛЯ ИЗМЕРЕНИЯ МАГНИТНОЙ ВЯЗКОСТИ ФЕРРОМАГНЕТИКОВ | 2007 |
|
RU2338216C1 |
US 2009009157 A1, 08.01.2009. |
Авторы
Даты
2012-05-27—Публикация
2011-02-02—Подача