СПОСОБ ДИАГНОСТИКИ ЭФФЕКТА ИЗМЕНЕНИЯ ЗНАКА ВЕКТОРА РАЗОРИЕНТИРОВКИ ВДОЛЬ МЕЖБЛОЧНЫХ ГРАНИЦ В НАНОТОНКИХ КРИСТАЛЛАХ Российский патент 2012 года по МПК B82B3/00 

Описание патента на изобретение RU2456229C1

Изобретение относится к области электронно-микроскопического исследования структуры нанотонких кристаллов и может быть использовано для диагностики границ разориентации в наноматериалах.

Исследования разориентировок решетки на различных этапах формирования межблочных границ (Bolotov I.E., Kolosov V.Yu. and Malkov V.В. Electron Microscopy Investigation of Crystals Based on Bend-Contour Arrangement 3. Formation of Subgrain Boundaries in Dislocation-Free Crystals of Selenium // Phys. Stat. Sol. (a). 1986. V.95. P.377-383), проведенные с помощью метода изгибных контуров (Bolotov I.E., Kolosov V.Yu. Investigation of Crystals Based on Bend-Contour Arrangement // 1 Relationship between Bend-Contour Arrangement and Bend Geometry // Phys. Stat. Sol (a). 1982. V.69, №1. P.85-96), позволили установить, что межблочные границы являются границами кручения с изменяющимся вдоль границы модулем вектора разориентировки . При этом вопрос об изменении знака вектора разориентировки оставался открытым. Между тем, наличие границ разориентации в кристаллах существенно влияет на их структурно-чувствительные свойства и, следовательно, возможность обнаружения зарождения и развития границ разориентации в наноматериалах, в том числе и в нанотонких кристаллах, изучение кристаллогеометрии границ разориентации имеет практическое значение.

Задача настоящего изобретения заключается в разработке способа электронно-микроскопической диагностики границ разориентации в наноматериалах.

Для решения поставленной задачи заявленный способ диагностики включает: получение последовательности электронно-микроскопических изображений нанотонкого кристалла с межблочной границей в темном поле в рефлексах h1k1l1, h2k2l2, … hnknln; анализ взаимного расположения пар изгибных экстинкционных контуров h1k1l1, h2k2l2, …, hnknln в соседних блоках нанотонкого кристалла, и при выявлении изменения порядка чередования пар изгибных контуров h1k1l1, h2k2l2, …, hnknln в соседних блоках на парах изгибных контуров с индексами hn-k-lkn-k-lln-k-l, hn-kkn-kln-k, hn-k+lkn-k+lln-k+l диагностируют эффект изменения знака вектора разориентировки вдоль межблочной границы в нанотонком кристалле.

Сущность заявленного способа диагностики заключается в следующем. Любой изгибной экстинкционный контур является геометрическим местом точек на электронно-микроскопическом изображении нанотонкого кристалла, где соответствующая изгибному контуру плоскость кристалла находится в отражающем положении. В связи с этим, анализируя взаимное расположение пар изгибных экстинкционных контуров h1k1l1, h2k2l2, …, hnknln в соседних блоках нанотонкого кристалла, можно отмечать положение и разориентировку плоскостей кристалла с одним и тем же индексом (hnknln) в соседних блоках нанотонкого кристалла. Изменение порядка чередования пар изгибных экстинкционных контуров hn-k-lkn-k-lln-k-l, hn-kkn-kln-k, hn-k+lkn-k+lln-k+l в соседних блоках нанотонкого кристалла означает изменение знака вектора разориентировки вдоль границы в нанотонком кристалле.

На фиг.1 схематично представлено положение изгибных контуров на электронно-микроскопическом изображении кристалла с межблочной границей в правой части. Как следует из фиг.1,а, изгибные экстинкционные контуры с одним и тем же индексом hn-k-lkn-k-lln-k-l, hn-kkn-kln-k, hn-k+lkn-k+lln-k+l на границе претерпевают разрыв, образуя пары контуров, смещенные относительно друг друга. Смещение контуров происходит из-за различия углов наклона плоскостей кристалла с одним и тем же индексом hn-k-lkn-k-lln-k-l, hn-kkn-kln-k, hn-k+lkn-k+lln-k+l в соседних блоках. На фиг.1,б схематично представлено сечение нанотонкого кристалла в плоскости границы. На данном рисунке видно, что углы наклона плоскостей кристалла с индексами hn-k-lkn-k-lln-k-l, hn-kkn-kln-k, hn-k+lkn-k+lln-k+l различны, а разность этих углов для плоскостей кристалла с разными индексами имеет различные по знаку значения.

Таким образом, новый технический результат, достигаемый заявленным способом, заключается в возможности обнаружения эффекта изменения знака вектора разориентировки и указания участка нанотонкого кристалла, на котором этот эффект имеет место.

Осуществление заявленного способа иллюстрируется следующим образом. Электронно-микроскопические изображения нанотонкого кристалла с границей, вышедшей на фронт роста, знак вектора разориентировки а вдоль которой изменяется, представлены на фиг.2. Как можно видеть на фиг.2,а в области кристалла, где знак вектора разориентировки «положительный» (A1B1), изгибной контур блока A hn-k-lkn-k-lln-k-l отстает от соответствующего контура блока B, что иллюстрируется темнопольным изображением кристалла в рефлексе , (фиг.2,б). В области (A2B2), где разориентировка решетки близка к нулю, контуры hn-kkn-kln-k расположены друг над другом, что подтверждается темнопольным изображением кристалла в рефлексе (фиг.2,в). В области кристалла, где знак «отрицателен» (A3B3) изгибной контур блока A hn-k+lkn-k+lln-k+l опережает соответствующий контур блока B, о чем свидетельствует темнопольное изображение кристалла, полученное в рефлексе (фиг.2,г).

Заявленный способ электронно-микроскопической диагностики позволяет обнаруживать эффект изменения знака вектора разориентировки и границы разориентации в наноматериалах.

Похожие патенты RU2456229C1

название год авторы номер документа
Способ диагностики римановой кривизны решетки нанотонких кристаллов 2015
  • Малков Вячеслав Борисович
  • Николаенко Ирина Владимировна
  • Швейкин Геннадий Петрович
  • Малков Андрей Вячеславович
  • Пушин Владимир Григорьевич
  • Шульгин Борис Владимирович
  • Малков Олег Вячеславович
RU2617151C2
СПОСОБ ДИАГНОСТИКИ РЕАЛЬНОЙ СТРУКТУРЫ КРИСТАЛЛОВ 2013
  • Малков Вячеслав Борисович
  • Николаенко Ирина Владимировна
  • Швейкин Геннадий Петрович
  • Малков Андрей Вячеславович
  • Пушин Владимир Григорьевич
  • Малков Олег Вячеславович
  • Шульгин Борис Владимирович
RU2534719C1
СПОСОБ ВИЗУАЛИЗАЦИИ РОТАЦИОННОГО ИСКРИВЛЕНИЯ РЕШЕТКИ НАНОТОНКИХ КРИСТАЛЛОВ 2014
  • Малков Вячеслав Борисович
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
  • Малков Андрей Вячеславович
  • Пушин Владимир Григорьевич
  • Шульгин Борис Владимирович
  • Малков Олег Вячеславович
RU2570106C1
Способ получения диссипативных структур 2016
  • Малков Вячеслав Борисович
  • Николаенко Ирина Владимировна
  • Швейкин Геннадий Петрович
  • Пушин Владимир Григорьевич
  • Малков Андрей Вячеславович
  • Шульгин Борис Владимирович
  • Малков Олег Вячеславович
  • Плаксин Сергей Владимирович
RU2637396C2
Способ диагностики эволюции нанотонких пространственных структур 2018
  • Малков Вячеслав Борисович
  • Николаенко Ирина Владимировна
  • Швейкин Геннадий Петрович
  • Пушин Владимир Григорьевич
  • Малков Андрей Вячеславович
  • Шульгин Борис Владимирович
  • Малков Олег Вячеславович
  • Плаксин Сергей Владимирович
RU2687876C1
СПОСОБ ИССЛЕДОВАНИЯ ФИЗИЧЕСКИХ СВОЙСТВ И ФИЗИЧЕСКИХ ПРОЦЕССОВ В НАНОТОНКИХ ПРОСТРАНСТВЕННЫХ ДИССИПАТИВНЫХ СТРУКТУРАХ 2019
  • Малков Вячеслав Борисович
  • Чемезов Олег Владимирович
  • Малков Андрей Вячеславович
  • Пушин Владимир Григорьевич
  • Шульгин Борис Владимирович
  • Малков Олег Вячеславович
RU2737861C1
МИКРОРЕЗОНАТОРНЫЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ФИЗИЧЕСКИХ ВЕЛИЧИН 1997
  • Бурков В.Д.
  • Гориш А.В.
  • Дехтяр А.В.
  • Егоров Ф.А.
  • Злобин Д.А.
  • Коптев Ю.Н.
  • Кузнецова В.И.
  • Малков Я.В.
  • Потапов В.Т.
  • Трегуб Д.П.
RU2135963C1
ОПТИЧЕСКАЯ ПОДЛОЖКА, ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ЭЛЕМЕНТ И СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО СВЕТОИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА 2013
  • Коике Дзун
  • Митамура Йосимити
  • Ямагути Фудзито
RU2604568C2
ОБОРУДОВАНИЕ И СПОСОБ ДЛЯ КОДИРОВАНИЯ ИЗОБРАЖЕНИЙ НА ОСНОВЕ ФИЛЬТРАЦИИ 2020
  • Чой, Дзангвон
  • Нам, Дзунгхак
RU2787884C1
СПОСОБ И УСТРОЙСТВО ДЛЯ КРОСС-КОМПОНЕНТНОЙ ФИЛЬТРАЦИИ 2020
  • Ли Сян
  • Чжао Синь
  • Ду Исинь
  • Чжао Лян
  • Лю Шань
RU2784906C1

Иллюстрации к изобретению RU 2 456 229 C1

Реферат патента 2012 года СПОСОБ ДИАГНОСТИКИ ЭФФЕКТА ИЗМЕНЕНИЯ ЗНАКА ВЕКТОРА РАЗОРИЕНТИРОВКИ ВДОЛЬ МЕЖБЛОЧНЫХ ГРАНИЦ В НАНОТОНКИХ КРИСТАЛЛАХ

Изобретение относится к области электронно-микроскопического исследования нанотонких кристаллов. Сущность изобретения: способ диагностики эффекта изменения знака вектора разориентировки вдоль межблочных границ в нанотонких кристаллах включает получение последовательности электронно-микроскопических изображений нанотонкого кристалла с межблочной границей в темном поле в рефлексах h1k1l1, h2k2l2, … hnknln, анализ взаимного расположения пар изгибных экстинкционных контуров h1k1l1, h2k2l2, …, hnknln в соседних блоках нанотонкого кристалла. При этом при выявлении изменения порядка чередования пар изгибных контуров h1kil1, h2k2l2, …, hnknln в соседних блоках на парах изгибных контуров с индексами hn-k-lkn-k-lln-k-l, hn-kkn-kln-k, hn-k+lkn-k+lln-k+l диагностируют эффект изменения знака вектора разориентировки вдоль межблочной границы в нанотонком кристалле. Техническим результатом изобретения является обнаружение эффекта изменения знака вектора разориентировки и указание участка нанотонкого кристалла, на котором этот эффект имеет место. 2 ил.

Формула изобретения RU 2 456 229 C1

Способ диагностики эффекта изменения знака вектора разориентировки вдоль межблочных границ в нанотонких кристаллах, включающий получение последовательности электронно-микроскопических изображений нанотонкого кристалла с межблочной границей в темном поле в рефлексах h1k1l1, h2k2l2, …, hnknln, анализ взаимного расположения пар изгибных экстинкционных контуров h1k1l1, …, hnknln в соседних блоках нанотонкого кристалла, характеризующийся тем, что при выявлении изменения порядка чередования пар изгибных контуров h1k1l1, h2k2l2, …, hnknln в соседних блоках на парах изгибных контуров с индексами hn-k-lkn-k-lln-k-l, hn-kkn-kln-k, hn-k-lkn-k+lln-k+l диагностируют эффект изменения знака вектора разориентировки вдоль межблочной границы в нанотонком кристалле.

Документы, цитированные в отчете о поиске Патент 2012 года RU2456229C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Методы исследования состава и структуры функциональных материалов
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Новосибирск, 11-16 октября 2009 г
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Методы определения дисперсности и текстурных характеристик
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Малков В.Б
и др
Обнаружение эффекта изменения знака вектора разориентировки по порядку чередования

RU 2 456 229 C1

Авторы

Малков Вячеслав Борисович

Малков Андрей Вячеславович

Пушин Владимир Григорьевич

Стрекаловский Виктор Николаевич

Малков Олег Вячеславович

Даты

2012-07-20Публикация

2010-11-13Подача