ДАТЧИК ДЛЯ ОПРЕДЕЛЕНИЯ РЕАКЦИОННОЙ СПОСОБНОСТИ ГАЗООБРАЗНЫХ И КОНДЕНСИРОВАННЫХ ПРОДУКТОВ Российский патент 2012 года по МПК G01N25/32 

Описание патента на изобретение RU2456583C1

Изобретение относится к области средств измерения, контроля и регистрации химической активности газообразных и конденсированных продуктов, а также их смесей, и может применяться для газового анализа в нефтехимической промышленности, в частности, в системах управления установками синтеза или разложения газообразных веществ в качестве детектора химически активных компонентов газовых смесей для их регистрации или контроля в химмотологии горючего, плазмохимии, системах выпуска отработавших или дымовых газов тепловых двигателей.

Известен термоэлектрический пирометр, содержащий последовательно соединенные между собой термоэлектрический преобразователь (термопару), выполненный в виде двух проводников из разнородных материалов, скрепленных между собой двумя концами в рабочий спай, и прибор для измерения термо-ЭДС [I]. Недостаток известного устройства состоит в том, что температура окружающей среды существенно влияет на работу термопары, что снижает достоверность и точность оценки реакционной способности газообразных и конденсированных продуктов.

Наиболее близким известным техническим решением к предлагаемому изобретению является датчик реакционной способности газообразных и конденсированных продуктов, содержащий последовательно соединенные между собой первый термоэлектрический преобразователь, которым является термопара, выполненная в виде двух проводников из разнородных материалов, скрепленных между собой двумя концами в рабочий спай, и прибор для измерения термо-ЭДС и вторую термопару, рабочий спай которой покрыт тонким слоем термостойкого пассивирующего состава, выводы термопар соединены между собой и с выводами прибора для измерения термо-ЭДС по принципу электрического мостового соединения, плечами которого являются рабочие спаи термопар, материалом для проводников каждой термопары является платинородий и платина, термопары помещены в герметичный корпус и залиты термостойким компаундом, рабочие спаи выведены за корпус [2].

Недостатками прототипа являются низкая достоверность и точность измерения термо-ЭДС при температуре газообразных и конденсированных продуктов ниже 250 градусов Цельсия по причине их низкой химической активности, а также недоиспользование измерительных возможностей датчика.

Цель изобретения - повышение достоверности и точности измерения термо-ЭДС при температуре газообразных и конденсированных продуктов ниже 250°С, а также расширение измерительных возможностей датчика.

Поставленная цель достигается тем, что в известный датчик реакционной способности газообразных и конденсированных продуктов, содержащий последовательно соединенные между собой первый термоэлектрический преобразователь, которым является термопара, выполненная в виде двух проводников из разнородных материалов, скрепленных между собой двумя концами в рабочий спай, и прибор для измерения термо-ЭДС и вторую термопару, рабочий спай которой покрыт тонким слоем термостойкого пассивирующего состава, выводы термопар соединены между собой и с выводами прибора для измерения термо-ЭДС по принципу электрического мостового соединения, плечами которого являются рабочие спаи термопар, материалом для проводников каждой термопары является платинородий и платина, термопары помещены в герметичный корпус и залиты термостойким компаундом, рабочие спаи выведены за корпус, дополнительно введены два электронагревательных элемента в виде спиралей из жаростойкого сплава, обвивающих термоэлектроды термопар, и в разрыв термоэлектродов первой термопары установлен выключатель электрический.

Новизна изобретения состоит в том, что дополнительно введены два электронагревательных элемента в виде спиралей из жаростойкого сплава, обвивающих термоэлектроды термопар, и в разрыв термоэлектродов первой термопары установлен выключатель электрический, что обеспечивает повышение достоверности и точности измерения термо-ЭДС при температуре газообразных и конденсированных продуктов ниже 250°С, а также расширение измерительных возможностей датчика.

Сущность изобретения поясняется схемой, изображенной на чертеже, где обозначено: 1 - основная платинородий-платиновая термопара, причем 2 - её положительный термоэлектрод; 3 - сравнительная платинородий-платиновая термопара с термостойким изоляционным покрытием - 4, причем 5 - положительный термоэлектрод этой термопары; термопары соединены между собой и с прибором для измерения термо-ЭДС - 6 в мостовую электрическую цепь; термопары залиты компаундом - 7, помещены в корпус - 8, от которого изолированы изолятором - 9, а в верхней части - герметиком - 10; рабочие спаи термопар выведены за корпус 8. Для долговечной, надежной работы термопары заливают термостойким компаундом, например полиуретановым горячего отверждения К-30. Для термостойкого изоляционного покрытия 4 сравнительной термопары используют термостойкий пассивирующий состав, например тефлон. В изолятор 9, установлены проводники электронагревательного элемента 11, обвивающие оба термоэлектрода каждой термопары и выполненные в виде спирали из жаростойкого материала, например нихрома, предназначенные для предварительного подогрева термоэлектродов до температуры начала каталитической активности платинородия. В разрыв термоэлектродов основной термопары установлен выключатель электрический 12, позволяющий выключать ее из цепи.

Предлагаемый датчик работает следующим образом.

Корпус 8 рабочими спаями термопар 1 и 3 помещается в исследуемую газовую смесь, например, в продукты плазмохимической конверсии углеводородов. В качестве сравнительного элемента используется термопара 3, изолированная от химической среды. Так как температура среды вблизи спаев термопар 1 и 3 одинакова, в термопарах генерируется одинаковая величина термо-ЭДС, зависящая от температуры рабочего спая. Температура рабочих спаев термопар, за счет электронагревательных элементов 11, помещенных в изолятор 9, доводится до температуры начала каталитической активности платинородия через временной интервал 30 секунд. В плечах моста одинаковые термо-ЭДС взаимно компенсируют друг друга - стрелка прибора для измерения термо-ЭДС 6 не отклоняется. Если же в составе газовой смеси или конденсированных продуктов есть химически активные составляющие, то реагируя (проходит ускоренная химическая реакция за счет каталитического действия платинородия) на поверхности рабочего спая термопары 1 с выделением или поглощением тепла, они способствуют изменению температуры спая термопары 1, поэтому меняется термо-ЭДС этой термопары (эффект Зеебека). Напряжение на выходах термопар 1 и 3 становится различным и стрелка прибора для измерения термо-ЭДС 6 отклонится в ту или другую сторону в зависимости от того, с поглощением или выделением тепла проходили химические реакции. Для измерения температуры окружающей среды выключатель электрический 12, расположенный в разрыве термоэлектродов термопары 1, выходящих в верхней части из герметика 10, переводится из положения А в положение Б, тем самым выключая из измерительной цепи термопару 1. Герметик 7 изолирует термоэлектроды термопар 1 и 3 от корпуса 8.

Промышленная осуществимость предлагаемого изобретения обосновывается тем, что в нем использованы известные в аналоге и прототипе узлы, блоки и элементы по своему прямому функциональному назначению. В организации-заявителе изготовлена модель датчика в 2010 году.

Положительный эффект от использования предлагаемого датчика заключается в том, что обеспечиваются условия для измерения двух параметров среды, а именно реакционной способности и температуры. Первый - за счет возможности осуществить сигнализацию наличия химически активных компонентов в интересующей смеси газовых и (или) конденсированных продуктов и измерить уровень реакционной способности смеси с использованием сочетания одновременно как эффекта - каталитического платинородия, так и термоэлектрического эффекта Зеебека, а также за счет обеспечения необходимой температуры начала каталитической активности платинородия в начале измерений. Второй - за счет использования выключателя электрического, отключающего из измерительной цепи первую термопару. Это позволяет повысить не менее чем на 30…40% достоверность и точность измерения термо-ЭДС при температуре газообразных и конденсированных продуктов ниже 250°С, а также расширить не менее чем на 50% измерительные возможности датчика.

Источники информации

1. Арутюнов В.О. Электрические измерительные приборы и измерения: - М.: Государственное энергетическое издательство, 1958. - 631 с, ЭЭ - 5-2; с.556 (аналог).

2. Патент на полезную модель 61427 Россия, МПК G01N 25/32. Датчик реакционной способности газообразных и конденсированных продуктов / С.Е.Потураев, А.В.Назаров, А.И.Бобович (Россия) - №2006126351/22; Заявлено 20.07.06; Опубл. 27.02.07, Бюл. №6. - 3 с. (прототип).

Похожие патенты RU2456583C1

название год авторы номер документа
Термоэлектрический термометр 1989
  • Кузичев Леонид Николаевич
SU1719924A1
Способ измерения параметров жидкости 2019
  • Калашников Александр Александрович
RU2697408C1
Способ контроля полярности термоэлектродов 2020
  • Соколов Владимир Викторович
  • Липин Борис Борисович
  • Соколов Алексей Вениаминович
  • Молодцов Антон Анатольевич
RU2780703C2
Устройство для определения теплофизических характеристик материалов 1990
  • Колесников Борис Петрович
SU1770871A1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ КЕРАМИЧЕСКИХ ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕРМОМЕТРИИ ИЗ НИТРИДОВ ЭЛЕМЕНТОВ ПОДГРУПП ТИТАНА И ВАНАДИЯ МЕТОДОМ ОКИСЛИТЕЛЬНОГО КОНСТРУИРОВАНИЯ 2021
  • Ковалев Иван Александрович
  • Кочанов Герман Петрович
  • Рубцов Иван Дмитриевич
  • Шокодько Александр Владимирович
  • Чернявский Андрей Станиславович
  • Солнцев Константин Александрович
RU2759827C1
Устройство для измерения температуры вращающихся объектов 1974
  • Жуковский Александр Валентинович
  • Введенский Юрий Николаевич
  • Кузьмин Александр Иванович
SU553482A1
СПОСОБ КОНТРОЛЯ ОБРЫВОВ ИЗОЛИРОВАННЫХ ТЕРМОПАР ПРИ ТЕПЛОПРОЧНОСТНЫХ ИСПЫТАНИЯХ КОНСТРУКЦИЙ И ИЗМЕРИТЕЛЬНАЯ ИНФОРМАЦИОННАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2015
  • Долгов Александр Сергеевич
  • Зубов Евгений Георгиевич
RU2598703C1
СПОСОБ БЕЗДЕМОНТАЖНОЙ ОЦЕНКИ ДОСТОВЕРНОСТИ ПОКАЗАНИЙ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ 2004
  • Белевцев А.В.
  • Каржавин А.В.
  • Каржавин В.А.
  • Шевченко А.И.
RU2262087C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 1996
  • Зубов Е.Г.
  • Ильин Ю.С.
  • Лебедева А.И.
RU2104504C1
Способ стабилизации термо-ЭДС термопар 1980
  • Стаднык Богдан Иванович
  • Новиков Иван Иванович
  • Гордов Александр Николаевич
  • Федик Иван Иванович
  • Лах Владимир Иванович
  • Столярчук Петр Гаврилович
  • Саноцкий Ярополк Владимирович
SU939962A1

Реферат патента 2012 года ДАТЧИК ДЛЯ ОПРЕДЕЛЕНИЯ РЕАКЦИОННОЙ СПОСОБНОСТИ ГАЗООБРАЗНЫХ И КОНДЕНСИРОВАННЫХ ПРОДУКТОВ

Изобретение относится к области приборостроения и может быть использовано для контроля химической активности газообразных и конденсированных продуктов. Заявленное устройство для определения реакционной способности газообразных и конденсированных продуктов основано на использовании термоэлектрического эффекта Зеебека, реализуемого основной 1 и сравнительной 3 платинородий-платиновыми термопарами, причем у сравнительной рабочий спай изолирован термостойким пассивирующим составом 4. В устройстве также использован электрический измерительный мост, в котором плечами являются термоэлектроды термопар, а между ними встроен прибор для измерения термо-ЭДС 6. Мост служит для сравнения сигналов, поступающих от термопар, где платинородий в локальной области рабочего спая термопары 1 ускоряет химические реакции, преобразуя химическую активность среды в электрический сигнал. Разность сигналов от термопар 1 и 3 измеряется прибором для измерения термо-ЭДС 6. Технический результат: повышение достоверности и точности измерения термо-ЭДС при температуре газообразных и конденсированных продуктов ниже 250°С, а также расширение функциональных возможностей устройства. 1 ил.

Формула изобретения RU 2 456 583 C1

Датчик для определения реакционной способности газообразных и конденсированных продуктов, содержащий последовательно соединенные между собой первый термоэлектрический преобразователь, которым является термопара, выполненная в виде двух проводников из разнородных материалов, скрепленных между собой двумя концами в рабочий спай, и прибор для измерения термоЭДС и вторую термопару, рабочий спай которой покрыт тонким слоем термостойкого пассивирующего состава, выводы термопар соединены между собой и с выводами прибора для измерения термоЭДС по принципу электрического мостового соединения, плечами которого являются рабочие спаи термопар, материалом для проводников каждой термопары является платинородий и платина, термопары помещены в герметичный корпус и залиты термостойким компаундом, рабочие спаи выведены за корпус, отличающийся тем, что дополнительно введены два электронагревательных элемента в виде спиралей из жаростойкого сплава, обвивающих термоэлектроды термопар, и в разрыв термоэлектродов первой термопары установлен выключатель электрический.

Документы, цитированные в отчете о поиске Патент 2012 года RU2456583C1

Полная сателлитная автоматическая телефонная подстанция 1940
  • Лобов И.В.
SU61427A1
Устройство для определения содержания метана, водорода и тому подобных газов в воздухе 1948
  • Кравченко В.С.
SU81215A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАЗНОСТИ ТЕМПЕРАТУР 1992
  • Нотариус М.Д.
  • Ротберт И.Л.
  • Ференец В.А.
RU2112940C1
SU 754526 А, 09.08.1980
Устройство для определения микроконцентраций горючих газов 1978
  • Щербань Александр Назарович
  • Фурман Неонил Израилевич
  • Белоголовин Николай Стефанович
  • Скрынник Петр Михайлович
  • Каличко Иван Афанасьевич
  • Бурдейный Александр Саввич
SU712746A1
JP 56141544 A, 05.11.1981.

RU 2 456 583 C1

Авторы

Потураев Сергей Евгеньевич

Потураева Людмила Ивановна

Ситников Александр Петрович

Назаров Алексей Владимирович

Кривоногов Антон Николаевич

Константинов Евгений Николаевич

Форсов Георгий Львович

Даты

2012-07-20Публикация

2011-01-27Подача