СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ МАГНИТНЫХ ПЛЕНОК Co-P Российский патент 2012 года по МПК C23C18/18 C23C18/32 

Описание патента на изобретение RU2457279C1

Изобретение относится к области химического осаждения аморфных магнитных пленок Co-P, например, на полированное стекло и может быть использовано в вычислительной технике в головках записи и считывания информации, в датчиках магнитных полей, управляемых СВЧ-устройствах: фильтрах, амплитудных фазовых модуляторах и т.д.

Существующие способы получения аморфных магнитных пленок на стекло включают стадии: химической очистки, сенсибилизации, активации и осаждения из известных растворов с использованием в качестве восстановителя гипофосфита натрия. Для повышения качества пленок (адгезии, магнитных и других свойств) используются различные виды и режимы предварительной химической и термической обработки стекла, различные составы растворов с добавками солей в основном органических кислот и др. [Горбунова К.М., Никифорова А.А., Садаков Г.А. и др. Физико-химические основы процесса химического кобальтирования. М., Наука, 1974, стр.49-58]. [А.С. СССР, МПК C23C 18/18, №1145050, БИ №10 от 15.03.85].

Известные способы, обеспечивая хорошее качество пленок по многим свойствам, не обеспечивают этого качества по магнитным свойствам.

Наиболее близким по технической сущности и достигаемому результату к изобретению (прототип) является способ получения аморфных магнитных пленок Co-P на полированное стекло, включающий очистку подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в растворе перекиси водорода, активацию в растворе хлористого палладия, термообработку при температуре 150-450°C в течение 30-40 мин, осаждение аморфной магнитной пленки Co-P на немагнитный аморфный подслой Ni-P толщиной 20-30 нм при наложении в плоскости пленки однородного магнитного поля. [Патент МПК C23C 18/18, №2306367, БИ 26 от 20.09.2007 (прототип)].

Однако способ-прототип не обеспечивает получения аморфных анизотропных пленок Co-P достаточно высокого качества по коэрцитивной силе.

Техническим результатом изобретения является повышение качества аморфных пленок, а именно уменьшение коэрцитивной силы Нс.

Технический результат достигается благодаря тому, что в способе получения аморфных магнитных пленок Co-P, включающем очистку стеклянной подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в растворе перекиси водорода, активацию в растворе хлористого палладия, термообработку при температуре 150-450°C в течение 30-40 мин, осаждение аморфной магнитной пленки Co-P на немагнитный аморфный подслой Ni-P толщиной 20-30 нм при наложении в плоскости пленки однородного магнитного поля, дополнительно на аморфную магнитную Co-P пленку осаждают немагнитный аморфный слой Ni-P толщиной в пределах от 2,0 до 6,0 нм с последующим осаждением идентичной Co-P пленки.

Необходимость осаждения промежуточного слоя (прослойки) Ni-P в интервале толщин 2,0-6,0 нм вызвана тем, что в этом интервале толщин наблюдается стабилизация коэрцитивной силы с минимальной величиной.

Ниже описывается пример конкретной реализации предлагаемого способа в сопровождении таблицы 1 и фиг.1 и 2.

На подготовленную по способу-прототипу стеклянную подложку размером 10×12 мм2 и толщиной 1,5 мм осаждают буферный немагнитный подслой Ni-P толщиной d1. Осаждение проводят из раствора состава, г/л: сернокислый никель 7, гипофосфит натрия 10, лимоннокислый натрий 25, хлористый аммоний 17, аммиак 0,7 мл/л при температуре 99°C и pH 7,5. Далее на буферный подслой Ni-P из раствора состава, г/л: кобальт сернокислый 30, гипофосфит натрия 50, лимоннокислый натрий 80, аммиак 30 мл/л при температуре 97°C и pH 9,5 осаждают аморфную магнитную пленку Co-P толщиной d2 в однородном магнитном поле напряженностью 3 кЭ. Затем вновь осаждают немагнитный аморфный слой Ni-P толщиной d3 с последующим осаждением идентичной Co-P пленки толщиной d4.

Для определения зависимости коэрцитивной силы от толщины промежуточного немагнитного слоя d3 были изготовлены 11 образцов, у которых величина d3 последовательно менялась в пределах от 0 до 36 нм. При этом толщины магнитных Co-P пленок d2, d4 и буферного подслоя d1 Ni-P оставались неизменными и составляли соответственно 35, 35 и 30 нм. Это было необходимо для объективной сравнительной оценки результатов измерений коэрцитивной силы. Толщины слоев определялись по времени осаждения при известной скорости осаждения контрольных образцов Ni-P и Co-P. Для определения скорости осаждения предварительно были определены толщины контрольных образцов с известным временем осаждения по данным рентгеноспектральных измерений на приборе S4 PIONER. Измерение коэрцитивной силы производилось с помощью петлескопа, принцип работы которого основан на индукционном возбуждении сигнала с рабочей частотой 50 Гц.

В таблице 1 приведены толщины d1, d2, d3 и d4 11 образцов и значения Hc. Для лучшего восприятия зависимость Hc от толщины прослойки d3 Ni-P показана графически на фиг.1 и петлями гистерезиса на фиг.2.

Из таблицы 1 и фиг.1 видно, что в отсутствие прослойки Ni-P (d3=0) коэрцитивная сила пленки Co-P составляет 7,5 Э (образец 1). Отсутствие прослойки указывает на то, что этот образец получен по способу-прототипу. Наличие прослойки и рост его толщины до 2 нм приводит к уменьшению Hc до величины 0,69 Э (образец №6). Такая величина коэрцитивной силы остается практически неизменной до толщины прослойки d3~6 нм. При дальнейшем росте толщины промежуточного слоя Нс плавно увеличивается и при d3=36 нм составляет 3,5 Э (образец №11). На фиг.2 показаны петли гистерезиса образцов, полученных: a) по способу-прототипу (образец №1), b) по предлагаемому способу (образец №8).

Таким образом, предлагаемый способ позволяет существенно уменьшить (больше чем на порядок) величину коэрцитивной силы и, следовательно, улучшить качество аморфных пленок Co-P по сравнению с пленками, полученными по способу-прототипу.

Этот способ может быть успешно использован при получении аморфных магнитных пленок Co-P не только на полированное стекло, но и на другие материалы, например поликор, ситалл, кварц.

Таблица 1 №№ образцов
п/п
d1
Ni-P, нм
d2
Co-P, нм
d3
Ni-Р, нм
d4
Co-P, нм
Магнитный параметр
Hc (Э) 1 30,0 35,0 0,0 35,0 7,50 2 30,0 35,0 0,3 35,0 7,40 3 30,0 35,0 0,4 35,0 6,5 4 30,0 35,0 0,6 35,0 3,3 5 30,0 35,0 1,0 35,0 2,45 6 30,0 35,0 2,0 35,0 0,69 7 30,0 35,0 3,0 35,0 0,65 8 30,0 35,0 4,0 35,0 0,63 9 30,0 35,0 6,0 35,0 0,66 10 30,0 35,0 12 35,0 2,25 11 30,0 35,0 36 35,0 3,50

Похожие патенты RU2457279C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ МАГНИТНЫХ ПЛЕНОК Со-Р 2012
  • Чжан Анатолий Владимирович
  • Патрин Геннадий Семенович
  • Буркова Людмила Викторовна
RU2501888C1
СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ МАГНИТНЫХ ПЛЕНОК Со-Р 2006
  • Кипарисов Семен Яковлевич
  • Беляев Борис Афанасьевич
RU2306367C1
Способ получения аморфных пленок Со-Р на диэлектрической подложке 2016
  • Подорожняк Сергей Александрович
  • Чжан Анатолий Владимирович
  • Патрин Геннадий Семенович
RU2630162C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ МАГНИТНЫХ ПЛЕНОК 2013
  • Сорокин Александр Николаевич
  • Свалов Андрей Владимирович
  • Васьковский Владимир Олегович
  • Савин Петр Алексеевич
  • Курляндская Галина Владимировна
RU2572921C2
МНОГОСЛОЙНОЕ АМОРФНОЕ МАГНИТОМЯГКОЕ ПОКРЫТИЕ 1991
  • Шелег Михаил Устинович[By]
  • Федосюк Валерий Михайлович[By]
  • Касютич Оксана Ивановна[By]
RU2069913C1
СПОСОБ, УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ ПЛЕНОК И МНОГОСЛОЙНАЯ СТРУКТУРА, ПОЛУЧЕННАЯ С ИХ ИСПОЛЬЗОВАНИЕМ 2009
  • Васьковский Владимир Олегович
  • Савин Петр Алексеевич
  • Курляндская Галина Владимировна
  • Свалов Андрей Владимирович
  • Сорокин Александр Николаевич
RU2451769C2
УЛУЧШЕНИЕ ХАРАКТЕРИСТИК МАГНИТНЫХ НОСИТЕЛЕЙ ИНФОРМАЦИИ, СОСТОЯЩИХ ИЗ ДВУХ ИЛИ БОЛЕЕ ФЕРРОМАГНИТНЫХ СЛОЕВ, РАЗДЕЛЕННЫХ НЕМАГНИТНОЙ ПРОСЛОЙКОЙ 2006
  • Воробьев Юрий Дмитриевич
  • Огнев Алексей Вячеславович
  • Чеботкевич Людмила Алексеевна
RU2323485C2
СПОСОБ ФОРМИРОВАНИЯ МАГНИТОРЕЗИСТИВНОГО ЭЛЕМЕНТА ПАМЯТИ НА ОСНОВЕ ТУННЕЛЬНОГО ПЕРЕХОДА И ЕГО СТРУКТУРА 2012
  • Гусев Сергей Александрович
  • Качемцев Александр Николаевич
  • Киселев Владимир Константинович
  • Климов Александр Юрьевич
  • Рогов Владимир Всеволодович
  • Фраерман Андрей Александрович
RU2522714C2
СПОСОБ ФОРМИРОВАНИЯ МАГНИТНОГО МАТЕРИАЛА ДЛЯ ЗАПИСИ ИНФОРМАЦИИ С ВЫСОКОЙ ПЛОТНОСТЬЮ 2001
  • Спичкин Ю.И.
  • Тишин А.М.
RU2227941C2
Способ получения магнитомягкого покрытия сплавом никель-кобальт-фосфор 1983
  • Кипарисов Семен Яковлевич
SU1157132A1

Иллюстрации к изобретению RU 2 457 279 C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ МАГНИТНЫХ ПЛЕНОК Co-P

Изобретение относится к области химического осаждения аморфных магнитных пленок, например, на такие материалы, как полированное стекло, поликор, ситалл, кварц, и может быть использовано в вычислительной технике, в головках записи и считывания информации, в датчиках магнитных полей, управляемых СВЧ-устройствах: фильтрах, амплитудных фазовых модуляторах и т.д. Способ включает очистку подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в растворе перекиси водорода, активацию в растворе хлористого палладия, термообработку при температуре 150-450°С в течение 30-40 мин, осаждение аморфной магнитной пленки Со-Р на немагнитный аморфный слой Ni-P толщиной 20-30 нм при наложении в плоскости пленки однородного магнитного поля, при этом на аморфную магнитную пленку Со-Р дополнительно осаждают немагнитный аморфный слой Ni-P толщиной от 2,0 до 6,0 нм с последующим осаждением идентичной Со-Р пленки. Изобретение позволяет повысить качество аморфных пленок за счет уменьшения коэрцитивной силы Hc. 2 ил., 1 табл.

Формула изобретения RU 2 457 279 C1

Способ получения аморфной магнитной пленки, включающий очистку подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в растворе перекиси водорода, активацию в растворе хлористого палладия, термообработку при температуре 150-450°С в течение 30-40 мин, осаждение аморфной магнитной пленки Со-Р на немагнитный аморфный слой Ni-P толщиной 20-30 нм при наложении в плоскости пленки однородного магнитного поля, отличающийся тем, что на аморфную магнитную пленку Со-Р дополнительно осаждают немагнитный аморфный слой Ni-P толщиной от 2,0 до 6,0 нм с последующим осаждением идентичной Со-Р пленки.

Документы, цитированные в отчете о поиске Патент 2012 года RU2457279C1

СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ МАГНИТНЫХ ПЛЕНОК Со-Р 2006
  • Кипарисов Семен Яковлевич
  • Беляев Борис Афанасьевич
RU2306367C1
Способ подготовки полированной неметаллической поверхности к химической металлизации 1983
  • Кипарисов Семен Яковлевич
SU1145050A1
Способ получения магнитомягкого покрытия сплавом никель-кобальт-фосфор 1983
  • Кипарисов Семен Яковлевич
SU1157132A1
Способ получения магнитных покрытий 1989
  • Кипарисов Семен Яковлевич
SU1663047A1
JP 62260092 A, 12.11.1987.

RU 2 457 279 C1

Авторы

Кипарисов Семен Яковлевич

Чжан Анатолий Владимирович

Патрин Геннадий Семенович

Даты

2012-07-27Публикация

2011-05-27Подача