СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ НИЗКОЛЕГИРОВАННЫХ ЛИСТОВ Российский патент 2012 года по МПК B21B1/26 

Описание патента на изобретение RU2457912C2

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов, преимущественно из низколегированных марок стали категории прочности 265-325.

Основными требованиями, предъявляемыми к горячекатаному металлопрокату из низколегированных марок стали, являются высокие прочностные характеристики при повышенных пластических, особенно вязких, свойствах, обеспечивающих технологичность монтажа конструкций и их эксплуатационные параметры. При этом особенно важным является обеспечение равенства механических параметров проката в широком диапазоне толщин.

Известны способы горячей прокатки полос, включающие горячую прокатку полос в черновой и чистовой стадиях прокатки на толстолистовых станах горячей прокатки, а также охлаждение полос водой на отводящем рольганге (см., например: Технология прокатного производства. В 2-х книгах. Кн. 2. Справочник: Беняковский М.А., Богоявленский К.Н., Виткин А.И. и др. М.: Металлургия, 1991. - 423 с. Патент РФ №2037536, Патент РФ №2277445).

Недостатками известных способов является сложность обеспечения заданного уровня физико-механических свойств горячекатаных полос из низколегированных марок стали при их горячей прокатке на толстолистовом стане с максимальной производительностью.

Наиболее близким аналогом к заявляемому объекту является способ производства рулонов горячекатаной трубной стали, преимущественно с содержанием углерода 0,11% и толщиной 8-13 мм, включающий нагрев сляба под горячую прокатку, прокатку его в черновой и чистовой непрерывной группах клетей широкополосного стана с температурой конца прокатки 780-840°С, дифференцированное охлаждение полосы водой сверху и снизу секциями душирующего устройства на отводящем рольганге до 570-610°С (см. Патент РФ №2268793).

Недостаток известного способа заключается в сложности обеспечения требуемого одинакового комплекса механических свойств в горячекатаной полосе из низколегированных марок стали в широком диапазоне толщин (8-50 мм), особенно в условиях толстолистового стана горячей прокатки при прокатке 6-8-кратных раскатов. Это, в свою очередь, не позволяет обеспечить в горячекатаной полосе, предназначенной для последующего изготовления конструкционных изделий, уровень характеристик по всей длине раската, соответствующих, например, категории прочности 265-325.

Технической задачей, решаемой заявляемым изобретением, является обеспечение в горячекатаном прокате из низколегированной стали конструкционного сортамента одинаковых механических свойств, соответствующих категории прочности 265-325 в широком диапазоне толщин (8-50 мм) в условиях высокопроизводительного толстолистового стана горячей прокатки.

Поставленная задача решается тем, что в известном способе производства раскатов горячекатаной полосы конструкционных марок стали с содержанием углерода не более 0,16% и толщиной 8-50 мм, включающем нагрев сляба под горячую прокатку, прокатку его в черновой и чистовой стадиях прокатки толстолистового стана, дифференцированное охлаждение полосы водой сверху и снизу секциями душирующего устройства на отводящем рольганге с последующим охлаждением на воздухе от температур 600-650°С, в соответствии с изобретением горячую прокатку в чистовой стадии прокатки толстолистового стана начинают с толщины проката, которую определяют из выражения:

hH=59.299Ln(hK)-86.604,

где hK - конечная толщина горячекатаной полосы, мм, при этом температуру конца прокатки принимают равной для полос толщиной от 8,0 мм до 14,0 мм включительно - 830÷850°С, для полос толщиной более 14,0 мм до 25,0 мм включительно - 810÷830°С, а для полос толщиной более 25,0 мм до 50,0 мм включительно - 790÷810°С, кроме того, интенсивность охлаждения верхней поверхности полосы на отводящем рольганге регулируют изменением скорости ее охлаждения, которую определяют из выражения:

Vверх=0,48×е0,03×hк×(Tкп-Туо)/hк,

где Vверх - скорость охлаждения верхней поверхности полосы, град./с,

hк - конечная толщина полосы, мм;

Ткп - температура конца прокатки, °С;

Туо - температура конца ускоренного охлаждения, °С,

а охлаждение нижней поверхности полосы производят монотонно равномерно по всей ее длине.

Сущность изобретения заключается в следующем.

Приведенные математические зависимости, регламентирующие суммарное относительное обжатие и скорость охлаждения раскатов на отводящем рольганге, - эмпирические и получены при обработке опытных данных при прокатке указанного сортамента на толстолистовом стане 5000 горячей прокатки ОАО «Магнитогорский металлургический комбинат».

Сущность заявляемого технического решения заключается в обеспечении условий для формирования в горячекатаной полосе толщиной 8-50 мм из стали с содержанием углерода до 0,16% на стадии горячей прокатки заданного уровня механических свойств, позволяющих получать конструкционный металлопрокат повышенной прочности.

Как известно, для выбранного диапазона марок стали горячекатаный прокат, предназначенный для изготовления различных конструкций, должен обладать высокими значениями прочностных характеристик и одновременно повышенной пластичностью, вязкостью (поперечный изгиб на 180° вокруг оправки определенного диаметра d, для заявляемых толщин d=1,5hполосы), a также сопротивлением хрупкому разрушению при температурах монтажа и эксплуатации конструкций. Горячекатаные полосы из заявляемых марок стали имеют ферритно-перлитную структуру. Размеры, форма и количество зерен феррита оказывают большое влияние на эти показатели. Мелкозернистая структура феррита обеспечивает требуемый уровень σв и вязкой составляющей. Одним из главных условий получения мелкозернистой структуры феррита является наличие мелкозернистой структуры аустенита. Мелкозернистая структура аустенита может быть получена при определенных степенях и скоростях деформаций и температурах прокатываемого металла. Особенно важно соблюдение этих условий в конце горячей прокатки полос толщиной <25 мм (см.: Регламентированная горячая прокатка полос на непрерывных станах. Tomczykiewicz Jan, Wegrzyn Aleksander. Regulowane walcowanie blach w garacej walcowni ciaglei. «Prz. now, hutn. ze-laza». 1976.4. №2. 63-67). Известно, что в полосах из низколегированных марок стали интенсивная рекристаллизация начинается при температурах около 800°С. Микродобавки (например, V, Аl и Ti) практически не влияют на температуру рекристаллизации, а только несколько сдерживают рост зерен после рекристаллизации. Следовательно, оптимальной с точки зрения формирования требуемой мелкозернистой микроструктуры можно считать температуру 750-850°С. Именно в таком диапазоне, как правило, поддерживают конец прокатки в чистовой группе клетей для выбранных марок стали.

Таким образом, для получения требуемых механических свойств в оптимальном интервале температур конца прокатки (750-850°С) необходимо осуществлять совместное управление температурным полем полосы и режимом обжатия в чистовой группе стана путем регламентации суммарного относительного обжатия проката в этой стадии.

Величина и форма аустенитного зерна зависит от скорости рекристаллизации при прокатке, которая в свою очередь, зависит как от суммарной деформации в чистовой стадии прокатки, так и от температуры прокатки в чистовой стадии прокатки. Маленькое суммарное относительное обжатие приводит к формированию крупного зерна (6-7 балла). Крупное зерно снижает пластические и вязкие свойства. Вследствие этого невозможно обеспечить в готовой горячекатаной полосе требуемых механических свойств (см., например: Гуляев А.П. Металловедение. Учебник для вузов. М.: Металлургия, 1986. - 544 с.).

Так как горячая полоса на отводящем рольганге движется по охлаждаемым роликам, то ее нижняя поверхность частично охлаждается. Кроме того, необходимо учитывать время соприкосновения воды с полосой со стороны нижней поверхности, так как вода, попадая на верхнюю поверхность полосы, стекая через кромки, обладает в 1,5-2,5 раза большей охлаждающей способностью за счет большего времени контакта полосы с водой по сравнению с нижней поверхностью. В связи с этим для формирования требуемого уровня механических свойств по всему сечению горячекатаной полосы, а также исключения перепада механических свойств на верхней и нижней поверхностях полосы в заявляемом техническом решении выбран принцип равномерной монотонной подачи воды на нижнюю поверхность полосы на отводящем рольганге стана.

Скорость охлаждения полос влияет на количество и форму зерен феррита, характер распределения перлита и цементита, выделение в структуре «избыточных фаз». Рост скорости охлаждения полосы увеличивает количество зерен феррита, приводит к измельчению зерна феррита. При снижении скорости охлаждения полосы в структуре стали будут грубые выделения избыточных фаз. По границам зерен феррита пройдут участки перлита, а в ферритовой матрице окажутся глобули цементита. При быстром охлаждении цементит образуется только в виде мелких включений по границам зерен, что обеспечивает получение стали с лучшими пластическими, особенно вязкими, свойствами. Этот факт в совокупности с необходимостью обеспечения требуемого температурного режима конца охлаждения определяет необходимость охлаждения поверхности полосы с регламентируемой скоростью охлаждения.

Указанная совокупность признаков в известных технических решениях не обнаружена.

На основании вышеприведенного анализа известных источников информации можно сделать вывод, что для специалиста заявляемый способ горячей прокатки полос не следует явным образом из известного уровня техники, а следовательно, соответствует условию патентноспособности "изобретательский уровень".

Пример осуществления способа.

На широкополосном стане 5000 горячей прокатки ОАО «ММК» прокатывают полосу из стали марки 09Г2С по ГОСТ 19281 с содержанием углерода (С) 0,08-0,10%, марганца (Мn) - 1,4-1,6% размерами 12×4200 мм.

Сляб, нагретый до требуемой температуры 1260°С, поступает на стан горячей прокатки, имеющий в своем составе реверсивную клеть, отводящий рольганг с охлаждающими секциями. После прокатки в черновой стадии прокатки толстолистового стана раскат толщиной 70 мм, имеющий температуру 980-1060°С, поступает на подстуживание до температур 850-900°С и далее проводят чистовую стадию прокатки до температур 830-850°С. При этом толщину раската выбирают исходя из представленной зависимости:

hH=59.299Ln(hK)-86.604, где hK - конечная толщина горячекатаного листа, мм.

При охлаждении раската на отводящем рольганге осуществляют дифференцируемое охлаждение верхней и нижней поверхностей полосы. Причем на нижнюю поверхность полосы подачу воды производят равномерно монотонно, а на верхнюю поверхность полосы количество воды регламентируют в диапазоне, необходимом для обеспечения требуемой скорости охлаждения, определяемой из выражения:

Vверх=0,48×е0,03×hk×(Tкп-Туо)/hK, где Vверх - скорость охлаждения верхней поверхности полосы, град./с; hK - конечная толщина горячекатаного листа, мм;

Ткп - температура конца прокатки, °С;

Туо - температура конца ускоренного охлаждения, °С.

Это позволяет поддерживать температуру конца охлаждения в диапазоне 600-650°С по всему объему полосы. Затем прокат по отводящему рольгангу направляется на холодильник, где полоса охлаждается до температуры 200-100°С.

Варианты технологических параметров, по которым по заявляемому способу осуществлялась прокатка в чистовой стадии прокатки стана горячей прокатки 5000 ОАО «ММК», представлены в Таблице.

Таблица - Технологические параметры горячей прокатки полосы толщиной 12 мм из стали марки 09Г2С в чистовой стадии прокатки стана 5000 ОАО «ММК» Тол-
щина прока-
та, мм
Толщина проката в начале чистовой стадии прокатки, мм Скорость охлаждения раскатов на отводящем рольганге, град./с Микроструктура (балл зерна феррита) Примечание
12 62 12 9 12 не регламентируется не регламентируется 5-6 по способу-прототипу

Заявляемая технология производства горячекатаных полос на примере горячей прокатки стали марки 09Г2С обеспечивает получение мелкозернистой структуры (8-9 балла), при этом механические свойства следующие:

σв=500-550 МПа, σT=390 МПа, δ5=22-25%, выдерживает холодный изгиб на 180° при диаметре оправки d=1,5h, где h - толщина полосы.

На основании вышеизложенного можно сделать вывод, что заявляемый способ работоспособен и устраняет недостатки, имеющие место в прототипе.

Заявляемый способ может найти широкое применение на толстолистовых станах горячей прокатки при производстве полос, предназначенных для производства профилей для конструкций, с требуемыми регламентируемыми физико-механическими свойствами горячекатаного проката при максимальной производительности стана.

Следовательно, заявляемый способ соответствует условию патентоспособности «промышленная применимость».

Похожие патенты RU2457912C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ВЫСОКОПРОЧНЫХ НИЗКОЛЕГИРОВАННЫХ ЛИСТОВ 2010
  • Тахаутдинов Рафкат Спартакович
  • Бодяев Юрий Алексеевич
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
RU2449843C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ПОЛОСЫ ТРУБНЫХ МАРОК СТАЛИ 2008
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
RU2393933C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО РУЛОННОГО ПРОКАТА НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2011
  • Васильев Иван Сергеевич
  • Голубчик Эдуард Михайлович
  • Курбан Виктор Васильевич
  • Кузнецов Алексей Владимирович
  • Семенов Павел Павлович
RU2450061C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2013
  • Корчагин Андрей Михайлович
  • Сахаров Максим Сергеевич
  • Цветков Дмитрий Сергеевич
  • Попова Светлана Дмитриевна
  • Сабреев Дмитрий Валерьевич
RU2561569C2
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
  • Казаков Игорь Владимирович
RU2365439C2
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2010
  • Голубчик Эдуард Михайлович
  • Кузнецов Алексей Владимирович
  • Васильев Иван Сергеевич
  • Стеканов Павел Александрович
RU2455088C2
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
  • Казаков Игорь Владимирович
RU2350411C2
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
RU2350413C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2004
  • Кузнецов Владимир Георгиевич
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Денисов Сергей Владимирович
RU2268793C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОС 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
  • Казаков Игорь Владимирович
RU2350412C2

Реферат патента 2012 года СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ НИЗКОЛЕГИРОВАННЫХ ЛИСТОВ

Изобретение предназначено для повышения качества широких горячекатаных листов, преимущественно из низколегированных марок стали категории прочности 265-325. Способ включает нагрев заготовки, прокатку на черновой и чистовой стадиях с дифференцированным охлаждением на толстолистовом стане горячей прокатки. Получение изделий с одинаковым комплексом механических свойств в широком диапазоне толщин обеспечивается за счет того, что заготовку из стали конструкционного сортамента с содержанием углерода не более 0,16% прокатывают на толстолистовом стане горячей прокатки при температуре конца прокатки 790-850°С в полосу толщиной 8-50 мм. После прокатки полосы осуществляют ее дифференцируемое охлаждение водой. При этом суммарное относительное обжатие полосы при прокатке в чистовой группе стана, а также скорость охлаждения верхней поверхности полосы на отводящем рольганге в зависимости от конечной толщины полосы регламентированы математическими выражениями. 1 табл.

Формула изобретения RU 2 457 912 C2

Способ производства горячекатаных листов из низколегированных марок стали с содержанием углерода не более 0,16% и толщиной 8-50 мм, включающий нагрев сляба под горячую прокатку, прокатку его на черновой и чистовой стадиях прокатки на толстолистовом стане, дифференцированное охлаждение полосы водой сверху и снизу секциями душирующего устройства на отводящем рольганге с последующим охлаждением на воздухе от температур 600-650°С, отличающийся тем, что горячую прокатку на чистовой стадии прокатки толстолистового стана начинают с толщины проката, которую определяют из выражения:
hн=59,299Ln(hк)-86,604
где hк - конечная толщина горячекатаной полосы, мм,
при этом температуру конца прокатки принимают равной для полос толщиной от 8,0 мм до 14,0 мм включительно - 830-850°С, для полос толщиной более 14,0 мм до 25,0 мм включительно - 810-830°С, а для полос толщиной более 25,0 мм до 50,0 мм включительно - 790-810°С, при этом интенсивность охлаждения верхней поверхности полосы на отводящем рольганге регулируют изменением скорости ее охлаждения, которую определяют из выражения:

где Vверх - скорость охлаждения верхней поверхности полосы, град/с;
hк - конечная толщина полосы, мм;
Ткп - температура конца прокатки, °С;
Туо - температура конца ускоренного охлаждения, °С,
а охлаждение нижней поверхности полосы производят монотонно равномерно по всей ее длине.

Документы, цитированные в отчете о поиске Патент 2012 года RU2457912C2

СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2004
  • Кузнецов Владимир Георгиевич
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Денисов Сергей Владимирович
RU2268793C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОС 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
  • Казаков Игорь Владимирович
RU2350412C2
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2008
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
RU2356658C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
  • Казаков Игорь Владимирович
RU2365439C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ЛИСТОВОЙ СТАЛИ 2004
  • Погожев Александр Владимирович
  • Степанов Александр Александрович
  • Степаненко Владислав Владимирович
  • Ламухин Андрей Михайлович
  • Павлов Сергей Игоревич
  • Антонов Валерий Юрьевич
  • Горелик Павел Борисович
  • Рослякова Наталья Евгеньевна
  • Шурыгина Марина Викторовна
  • Трайно Александр Иванович
RU2268097C1
EP 1559797 A1, 03.08.2005.

RU 2 457 912 C2

Авторы

Бодяев Юрий Алексеевич

Денисов Сергей Владимирович

Стеканов Павел Александрович

Даты

2012-08-10Публикация

2010-11-01Подача