РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА Российский патент 2012 года по МПК F02K9/18 

Описание патента на изобретение RU2461728C2

Предполагаемое изобретение относится к области ракетной техники, а именно к ракетному двигателю твердого топлива (РДТТ) с зарядом, прочно скрепленным с внутренними стенками корпуса ракетного двигателя, и может быть использовано при разработке новых образцов РДТТ, предпочтительно в качестве стартовых ускорителей ракет, самолетов и других летательных аппаратов (ЛА).

Так как ускорители ЛА обычно отделяются от него после завершения разгона, они, как правило, состоят из связки нескольких двигателей и для них большое значение имеет:

- постоянство внутрибаллистических характеристик (ВБХ) двигателя;

- реализация нейтрального характера зависимости «давление-время» в камере сгорания двигателя;

- обеспечение резкого спада давления в конце работы двигателя;

- одновременность (для связки двигателей) обнуления давления в камерах сгорания двигателя;

- ограничение величины начального пика давления, который, как правило, колеблется в широких пределах по давлению.

При этом важно обеспечить максимальное заполнение камеры сгорания двигателя топливом и наиболее полную реализацию его энергетических характеристик при минимальном пассивном весе РДТТ.

Разработка и использование РДТТ с зарядами из высокоимпульсных металлосодержащих смесевых твердых ракетных топлив (СТРТ), прочно скрепленных с внутренними стенками корпуса двигателя, позволяет существенно увеличить полный импульс тяги, снизить зависимость давления в камере сгорания РДТТ от температуры и скорости горения топлива и тем самым уменьшить габариты РДТТ и повысить стабильность ВБХ.

Однако одной из основных проблем РДТТ, особенно с высоким удлинением (отношение длины заряда к диаметру заряда более 8), характеризующихся большим коэффициентом заполнения камеры сгорания топливом (объемная плотность заполнения корпуса двигателя топливом), является наличие эрозионного эффекта горения заряда, т.е. увеличения скорости горения топлива при больших скоростях движения продуктов сгорания (ПС) вдоль горящей поверхности заряда, как правило, по каналу заряда. Это явление крайне нежелательное, т.к. сопровождается повышением начального давления в камере сгорания вплоть до разрушения РДТТ. К тому же неравномерное выгорание свода заряда по длине приводит к образованию в конце работы РДТТ дегрессивно догорающих остатков топлива, что недопустимо для РДТТ стартовых ускорителей, особенно работающих в связке.

Способ борьбы с эрозионным эффектом горения предусмотрен:

- в конструкции РДТТ по пат. США №3380386 кл. 102-99 (снижена скорость потока ПС за счет увеличения диаметра центрального канала к заднему торцу). Однако такое решение задачи приводит к снижению объемной плотности заполнения РДТТ топливом, т.е. к снижению его весового совершенства;

- в конструкции РДТТ по пат. RU №2152529, МПК 7 F02K 9/08, содержащего корпус, заряд твердого топлива, канал которого выполнен последовательно звездообразным, цилиндрическим и коническим у заднего торца заряда.

Однако и эти конструкции имеют ряд существенных недостатков, а именно:

- расширяющийся к заднему торцу конический участок канала заряда уменьшает плотность заполнения корпуса двигателя топливом;

- в удлиненных зарядах расположение звездообразного участка канала вблизи переднего торца приводит к высокой скорости потока ПС, что неизбежно сопровождается эффектом возникновения эрозионного горения, а это в свою очередь приводит к образованию дегрессивных остатков топлива при выгорании цилиндрического участка канала;

- при высокой скорости потока ПС не обеспечивается необходимая полнота сгорания металлических частиц топлива, за счет малого времени пребывания частиц внутри КС.

Изобретение по патенту RU №2298110, МПК F02K 9/18, заявка 03.05.2005 г., опубл. 20.11.2006 г., принято авторами за прототип, как наиболее близкое по технической сути к заявляемому изобретению.

Прототип, обладая оригинальностью конструктивного оформления, относительно высокой плотностью объемного заполнения корпуса двигателя топливом и целенаправленным использованием эрозионного эффекта горения для обеспечения весового совершенства двигателя, тем не менее обладает рядом недостатков, а именно:

- высокая скорость потока ПС за счет головного расположения щелевого участка заряда снижает полноту сгорания топлива, понижая тем самым эффективность двигателя в целом;

- попарное расположение щелей приводит к «провалу» давления на диаграмме "давление-время" из-за относительно быстрого, единовременного выгорания топлива между парами щелей, что ведет к уменьшению среднего давления в РДТТ и не позволяет полностью реализовать энергетические характеристики топлива;

- конически-щелевой канал, примыкающий к коническому каналу со стороны его большего диаметра, требует для своего формования цельной (не разборной) формующей «иглы», что неприемлемо для крупногабаритных РДТТ из-за высокого усилия распрессовки при изготовлении и вследствие этого вероятности повреждения заряда.

Технической задачей предлагаемого технического решения является разработка конструкции РДТТ с зарядом из смесевого твердого ракетного топлива (СТРТ), прочно скрепленного с внутренними стенками корпуса РДТТ, с жесткими требованиями по величине и разбросу энергетических и внутрибаллистических характеристик, исключающего дегрессивно догорающие остатки топлива.

Совокупность конструктивных элементов в предлагаемом изобретении, а именно: осевой канал заряда РДТТ выполнен последовательно из конического участка круглого сечения, сужающегося в сторону сопла и конического участка звездообразного поперечного сечения и увеличивающегося свободного прохода к заднему торцу заряда, позволяет:

- исключить дегрессивные остатки СТРТ, поскольку сужающийся по ходу ускоряющегося движения ПС конический канал за счет эрозионного горения вырождается в цилиндрический, а звездообразный участок выгорает одновременно или раньше конического;

- повысить средний уровень давления в РДТТ увеличением давления в начальный период его работы за счет обеспечения эрозионного горения конической части канала;

- обеспечить полноту сгорания металлических частиц топлива за счет плавного движения скорости потока ПС в звездообразной части, поскольку свободное проходное сечение на этом участке увеличивается к заднему торцу за счет увеличивающейся глубины выемок звездообразного участка канала. Это приводит к уменьшению тепловых и газодинамических потерь и к повышению удельного импульса тяги;

- угол α раскрытия лучей звездообразного участка канала равный 15…20° обеспечивает плавную компенсацию увеличения горящей поверхности конического участка канала заряда. При α меньше 15 появляется прогрессивность тяги, при α больше 20° на диаграмме "тяга-время" появляется "седловина";

- последовательное расположение сужающегося конического канала и звездообразно увеличивающегося к заднему торцу свободного проходного сечения участка позволяет выполнять формующую канал «иглу» разъемной, что исключает риск повреждения крупногабаритного заряда при его распрессовке в процессе получения заряда;

- за счет звездообразного участка канала, расширяющего к заднему торцу проходного сечения так, что на границе с конусной частью глубина выемок равна нулю, а на заднем торце она составляет (0,65…0,85)e на заднем торце заряда, где e - горящий свод заряда, при этом выступы звездообразного канала образуют цилиндрическую поверхность, диаметр Д2 которой равен (0,8-0,9)Д1, достигается нейтральный закон изменения тяги РДТТ на основном участке его работы. Иные соотношения приводят либо к провалам или подъемам тяги в процессе работы двигателя, либо к завышению начального давления, что требует увеличения толщины стенок двигателя, а значит его пассивного веса;

- за счет сужающегося к заднему торцу заряда конического участка канала круглого сечения с отношением меньшего диаметра (Д2) к большему (Д1) 0,8…0,9 и расположения вершин выемок звездообразного участка канала на обратной конической поверхности обеспечивается максимальная объемная плотность заполнения корпуса топливом. При меньшем чем 0,8 отношении при оговоренных выше соотношениях геометрических параметров заявляемого РДТТ увеличение за счет конического участка заряда не компенсируется эрозионным горением, а больше чем 0,9 отношение приводит к образованию дегрессивно догорающих остатков топлива.

Технический результат предлагаемого изобретения заключается в разработке конструкции ракетного двигателя твердого топлива, содержащего канальный заряд, прочно скрепленный с внутренними стенками корпуса посредством защитно-крепящего слоя, корпус с передним и сопловым днищами, сопло и узел воспламенения. В заряде осевой канал выполнен последовательно из конического участка круглого сечения, сужающегося в сторону сопла, и конического участка звездообразного поперечного сечения, причем минимальный диаметр (Д2) конического участка канального заряда составляет (0,8…0,9)Д1, где Д1 - максимальный диаметр осевого канала. Глубина выемок звездообразного участка канала линейно увеличивается до величины (0,65……0,85)e на заднем торце заряда, где е - горящий свод заряда, а угол раскрытия лучей (α) звездообразного участка канала составляет 15…20°. Вершины выступов в канале между лучами образуют условную цилиндрическую поверхность, диаметр которой равен диаметру (Д2) конического участка канала, а длина звездообразного участка канала составляет (0,20…0,25)L3, где L3 - длина заряда.

Сущность изобретения поясняется графическими материалами, где:

Фиг.1 - продольный разрез заявляемого РДТТ

1 - корпус двигателя;

2 - заряд;

3 - переднее днище;

4 - сопловое днище;

5 - сопло;

6 - узел воспламенения;

7 - конический участок;

8 - звездообразный участок;

9 - защитно-крепящий слой;

10 - передний торец заряда;

11 - задний торец заряда;

12 - теплозащитное покрытие;

е - горящий свод заряда;

е1 - свод заряда на границе конусного и звездообразного участка канала заряда;

Д - диаметр корпуса двигателя;

Д1 - максимальный диаметр осевого канала заряда;

Д2 - минимальный диаметр конического участка канала заряда;

L - длина двигателя;

Lз - длина заряда;

Lк - длина конического участка канала заряда;

Lзв - длина звездообразного участка канала заряда;

Фиг.2 - поперечное сечение РДТТ вблизи начала звездообразного участка канала заряда;

13 - выемки звездообразного участка канала заряда;

14 - вершина выступа звездообразного участка канала заряда;

α - угол раскрытия лучей;

h1 - глубина выемок звездообразного участка канала у заднего торца заряда;

Фиг.3 - поперечное сечение РДТТ непосредственно у заднего торца заряда;

h - максимальная глубина выемок звездообразного участка канала заряда.

Фиг.4 - диаграммы "давление-время" заявляемого двигателя без учета и с учетом эрозионного горения.

15, 16, 17, 18, 19, 20, 21 - изменение давления в процессе работы двигателя;

τ - основное время работы двигателя;

τ1 - время компенсации эрозионного пика давления;

τсп - время адиабатического спада давления в двигателе;

τсп1 - время спада давления при догорании дегрессивных остатков топлива.

Двигатель с соотношением длины L к диаметру Д больше 8 с канальным зарядом 2, прочно скрепленным защитно-крепящим слоем 9 с внутренними стенками корпуса 1, переднее днище 3, сопловое днище 4, сопло 5, узел воспламенения 6. Осевой канал заряда имеет сужающийся в сторону заднего торца конический участок 7 длиной LK, граничащий с ним звездообразный участок 8 длиной Lзв. Длина звездообразного участка Lзв равна (0,20…0,25)Lз, где Lз - длина заряда, минимальный диаметр Д2 конического участка 7 на границе с звездообразным участком канала составляет (0,8…0,9)Д1 у переднего торца заряда 10, где Д1 - максимальный диаметр осевого канала заряда 2. Отсюда горящий свод e1 заряда на границе с звездообразным участком 8 соответственно больше свода е на переднем торце 10. Глубина выемок 13 (фиг.2, 3) звездообразного участка линейно изменяется от ноля на границе конического участка 7 канала до (0,65…0,85)e на заднем торце заряда 11, где e горящий свод заряда. Вершины выступов 14 на всей этой длине образуют цилиндрическую поверхность диаметром Д2. Угол α раскрытия лучей, равный 15…20°, он одинаков на всей длине звездообразного участка канала. На внутренних стенках корпуса 1 со стороны заднего торца 11 выполнено теплозащитное покрытие (ТЗП) 12. Так как скорость движения ПС в этом месте невелика из-за относительно большого свободного прохода, то масса ТЗП относительно небольшая. Сочетание конуса на участке Lк и выемок звездообразного сечения на конической поверхности повышает заполнение объема РДТТ топливом.

Двигатель, выполненный в соответствии с предлагаемым изобретением, работает следующим образом.

При подаче электрического импульса срабатывает узел воспламенения 6, и продукты его сгорания воспламеняют канальную 7, 8 и торцевые 10, 11 поверхности заряда. В сужающемся коническом участке 7 круглого сечения поток продуктов сгорания (ПС) топлива, разгоняясь до пороговой и выше скорости, при которой скорость горения топлива увеличивается за счет эрозионного эффекта, обеспечивает ускоренное выгорание увеличенного до е1 свода заряда. В результате конусная поверхность вырождается в цилиндрическую, увеличивая проходное сечение и снижая скорость движения потока ПС до пороговой и ниже, исключая в дальнейшем эрозионное горение.

Максимальная скорость ПС в самом узком месте конического участка по ходу движения по звездообразному участку уменьшается за счет увеличения его проходного сечения к заднему торцу заряда и относительно малого газоприхода с этого участка. Малый газоприход со звездообразного участка канала заряда компенсирует повышенный газоприход из-за эрозионного горения в самом узком месте канала заряда, обеспечивая тем самым нейтральный закон изменения давления. Снижение скорости движения ПС в звездообразном участке канала приводит к уменьшению тепловых и газодинамических потерь и увеличивает полноту сгорания металлических частиц топлива, повышая тем самым тягу двигателя. Указанная геометрия звездообразного участка обеспечивает его выгорание одновременно с коническим участком канала заряда, исключая дегрессивно догорающие остатки СТРТ.

В зависимости от требований, предъявляемых к двигателю, в каждом конкретном случае соотношения размеров элементов заряда в определенных авторами пределах находятся расчетным путем и уточняются при отработке РДТТ.

На диаграмме "давление-время" (фиг.4) позициями 15, 16, 17 показано изменение давления в процессе работы РДТТ в случае отсутствия эрозионного горения. На отрезке времени τ1 наблюдается пониженное давление, которое специально организовано за счет относительно маленькой поверхности горения звездообразного участка канала (Lзв) заряда.

При этом из-за наличия увеличенного свода e1 имеют место дегрессивно догорающие остатки топлива, которые сгорают за относительно большое время τсп1, не допустимое для РДТТ стартового ускорителя. Дело в том, что ускоритель отделяется от разгоняемого аппарата при обнулении тяги (Р=0) и на участке спада давления не отделенный от разгоняемого аппарата РДТТ тормозит движение аппарата. При большом времени спада торможение столь существенно, что сводит на нет повышенную эффективность РДТТ. К тому же время догорания дегрессивных остатков τсп1 колеблется в широких пределах из-за нестабильности горения топлива при низких давлениях, что нарушает отделение РДТТ ускорителя, состоящего из нескольких двигателей.

При организации эрозионного горения диаграмма давление-время получает нейтральный вид 18, 16, при этом обеспечивается резкий спад давления 19 и минимальное и стабильное время спада τсп. К тому же бесполезный импульс давления 20 и соответствующий ему импульс тяги перемещается на начальное время 21, когда только начинается разгон стартового аппарата и добавка импульса тяги так необходима.

Работоспособность двигателя, выполненного в соответствии с предлагаемым изобретением, подтверждена огневыми стендовыми испытаниями.

Похожие патенты RU2461728C2

название год авторы номер документа
ЗАРЯД ТВЕРДОГО ТОПЛИВА ДЛЯ РАКЕТНОГО ДВИГАТЕЛЯ АВИАЦИОННОЙ РАКЕТЫ 2011
  • Молчанов Владимир Федорович
  • Козьяков Алексей Васильевич
  • Прибыльский Ростислав Евгеньевич
  • Максяев Леонид Анатольевич
  • Амарантов Георгий Николаевич
  • Армишева Наталья Александровна
  • Рыжков Геннадий Фёдорович
RU2459969C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1999
  • Денежкин Г.А.
  • Каретников Г.В.
  • Каширкин А.А.
  • Куксенко А.Ф.
  • Макаровец Н.А.
  • Манеров Н.И.
  • Носов Л.С.
  • Подчуфаров В.И.
  • Семилет В.В.
  • Сопиков Д.В.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Колесников В.И.
  • Талалаев А.П.
  • Вронский Н.М.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
RU2152529C1
ЗАРЯД СМЕСЕВОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2012
  • Балабанов Геннадий Константинович
  • Амарантов Георгий Николаевич
  • Пашин Владимир Иванович
  • Ведерникова Екатерина Гавриловна
  • Пашин Сергей Владимирович
  • Державинский Николай Васильевич
RU2493400C1
ТВЕРДОТОПЛИВНЫЙ ЗАРЯД ДЛЯ РАКЕТНОГО ДВИГАТЕЛЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2005
  • Молчанов Владимир Федорович
  • Козьяков Алексей Васильевич
  • Никитин Василий Тихонович
  • Колесников Виталий Иванович
RU2298109C2
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2005
  • Амарантов Георгий Николаевич
  • Арефьев Вадим Сергеевич
  • Голов Вячеслав Михайлович
  • Дружинин Владимир Георгиевич
  • Замятин Игорь Леонидович
  • Иштулов Альберт Георгиевич
  • Ковальчук Виктор Яковлевич
  • Колач Петр Кузьмич
  • Тарасов Анатолий Игнатьевич
  • Углов Валерий Михайлович
  • Ширмовский Вячеслав Иванович
RU2298110C2
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2006
  • Куценко Геннадий Васильевич
  • Колесников Виталий Иванович
  • Амарантов Георгий Николаевич
  • Шамраев Виктор Яковлевич
  • Лазебный Валерий Николаевич
  • Дмитриев Анатолий Федорович
  • Гусева Галина Николаевна
  • Кузьмицкий Геннадий Эдуардович
  • Вронский Николай Михайлович
  • Макаров Леонид Борисович
  • Зажигин Александр Евгеньевич
  • Дудчак Владимир Власьевич
  • Граменицкий Михаил Дмитриевич
  • Волков Олег Куприянович
  • Рац Виктор Антонович
  • Богацкий Владимир Григорьевич
  • Левищев Олег Николаевич
  • Афонин Виктор Николаевич
RU2317433C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2008
  • Шамраев Виктор Яковлевич
  • Самохин Владимир Степанович
  • Баранов Генрих Николаевич
  • Меринова Людмила Васильевна
  • Амарантов Георгий Николаевич
RU2378523C1
Двухрежимный ракетный двигатель на твердом топливе 2022
  • Витязев Алексей Витальевич
  • Кабанов Дмитрий Евгеньевич
  • Логинов Андрей Николаевич
  • Наумченко Илья Константинович
  • Сорокин Владимир Алексеевич
RU2783054C1
ЗАРЯД РАКЕТНОГО ДВИГАТЕЛЯ 2004
  • Талалаев Анатолий Петрович
  • Колесников Виталий Иванович
  • Энкин Эдуард Абрамович
  • Соловьев Анатолий Федорович
  • Ахмадеев Владимир Фатихович
  • Ощепков Валерий Юрьевич
  • Рябинин Валерий Васильевич
  • Ежов Геннадий Петрович
  • Эктов Василий Петрович
  • Кувшинов Евгений Михайлович
  • Фокин Анатолий Сергеевич
  • Раимов Ренат Хамидович
  • Саушин Станислав Николаевич
RU2274757C1
ЗАРЯД ТВЕРДОГО ТОПЛИВА ДЛЯ РАКЕТНОГО ДВИГАТЕЛЯ 1999
  • Талалаев А.П.
  • Колесников В.И.
  • Молчанов В.Ф.
  • Козьяков А.В.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Аликин В.Н.
RU2178092C2

Иллюстрации к изобретению RU 2 461 728 C2

Реферат патента 2012 года РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА

Ракетный двигатель твердого топлива содержит канальный заряд, прочно скрепленный с внутренними стенками корпуса посредством защитно-крепящего слоя, корпус с передним и сопловым днищами, сопло и узел воспламенения. Осевой канал заряда выполнен последовательно из конического участка круглого поперечного сечения, сужающегося в сторону сопла и конического участка звездообразного поперечного сечения. Минимальный диаметр конического участка канального заряда составляет 0,8…0,9 максимального диаметра осевого канала. Глубина выемок звездообразного участка канала линейно увеличивается к заднему торцу заряда и составляет на заднем торце 0,65…0,85 горящего свода заряда на переднем торце заряда. Угол раскрытия лучей звездообразного участка канала составляет 15…20°. Вершины выступов в канале между лучами образуют условную цилиндрическую поверхность, диаметр которой равен минимальному диаметру конического участка канала. Длина звездообразного участка канала составляет 0,20…0,25 длины заряда. Изобретение позволяет повысить объемное заполнение корпуса топливом, получить нейтральную диаграмму "давление-время", исключить дегрессивный остаток топлива, снизить тепловые и газодинамические потери, повысить полноту сгорания металлических частиц топлива, а также снизить разброс энергетических и внутрибаллистических характеристик. 4 ил.

Формула изобретения RU 2 461 728 C2

Ракетный двигатель твердого топлива, содержащий канальный заряд, прочно скрепленный с внутренними стенками корпуса посредством защитно-крепящего слоя, корпус с передним и сопловым днищами, сопло и узел воспламенения, отличающийся тем, что в заряде осевой канал выполнен последовательно из конического участка круглого сечения, сужающегося в сторону сопла, и конического участка звездообразного поперечного сечения, причем минимальный диаметр (Д2) конического участка канального заряда составляет (0,8…0,9)Д1, где Д1 - максимальный диаметр осевого канала, глубина выемок звездообразного участка канала линейно увеличивается до величины (0,65…0,85)е на заднем торце заряда, где е - горящий свод заряда, а угол раскрытия лучей (α) звездообразного участка канала составляет 15…20°, причем вершины выступов в канале между лучами образуют условную цилиндрическую поверхность, диаметр которой равен диаметру (Д2) конического участка канала, а длина звездообразного участка канала составляет (0,20…0,25)L3, где L3 - длина заряда.

Документы, цитированные в отчете о поиске Патент 2012 года RU2461728C2

РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2005
  • Амарантов Георгий Николаевич
  • Арефьев Вадим Сергеевич
  • Голов Вячеслав Михайлович
  • Дружинин Владимир Георгиевич
  • Замятин Игорь Леонидович
  • Иштулов Альберт Георгиевич
  • Ковальчук Виктор Яковлевич
  • Колач Петр Кузьмич
  • Тарасов Анатолий Игнатьевич
  • Углов Валерий Михайлович
  • Ширмовский Вячеслав Иванович
RU2298110C2
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2008
  • Шамраев Виктор Яковлевич
  • Самохин Владимир Степанович
  • Баранов Генрих Николаевич
  • Меринова Людмила Васильевна
  • Амарантов Георгий Николаевич
RU2378523C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1999
  • Денежкин Г.А.
  • Каретников Г.В.
  • Каширкин А.А.
  • Куксенко А.Ф.
  • Макаровец Н.А.
  • Манеров Н.И.
  • Носов Л.С.
  • Подчуфаров В.И.
  • Семилет В.В.
  • Сопиков Д.В.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Колесников В.И.
  • Талалаев А.П.
  • Вронский Н.М.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
RU2152529C1
Устройство измерения разности фаз 1985
  • Германович Олег Пантелеймонович
  • Голод Олег Саулович
  • Кацан Игорь Федорович
  • Плахов Дмитрий Дмитриевич
  • Прусс Евгений Семенович
  • Тер-Сааков Эдуард Исаакович
SU1315914A1
US 3064423 A, 20.11.1962
US 3380386 А, 30.04.1968.

RU 2 461 728 C2

Авторы

Кислицын Алексей Анатольевич

Никитин Василий Тихонович

Молчанов Владимир Фёдорович

Козьяков Алексей Васильевич

Амарантов Георгий Николаевич

Нешев Сергей Сергеевич

Даты

2012-09-20Публикация

2010-12-03Подача