Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива, и может найти применение при разработке новых образцов ракетных двигателей больших удлинений и с нейтральным характером диаграммы тяги.
Проблема обеспечения нейтральной тяги двигателя в процессе всего времени работы для маршевых двигателей различных ракетных систем актуальна с точки зрения минимизации отклонений внутрибаллистических параметров и улучшение характеристик ракетных систем в целом.
Известен ракетный двигатель по патенту RU №2125175, 6 F02К 9/28, принятый авторами за аналог, содержащий головной полузаряд со звездообразным каналом и хвостовой полузаряд с коническим осевым каналом, расширяющимся к соплу.
Однако подробная конструкция предусматривает двухсекционный вариант двигателя. Что не является оптимальным с точки зрения весового совершенства ракетных двигателей. Наиболее близким по технической сути и достигаемому техническому результату к заявляемому изобретению является ракетный двигатель по патенту RU №2152529, 7 F02К 9/08. Он содержит корпус, заряд твердого топлива, канал которого выполнен последовательно звездообразным, цилиндрическим и коническим у заднего торца заряда. Задачей указанного изобретения являлось уменьшение массы дегрессивных остатков, повышение полного импульса тяги, обеспечение максимальной объемной плотности заполнения корпуса топливом и повышение среднего уровня давления в двигателе за счет организации эрозионного горения на большой части поверхности канала.
Однако двигатель подобной конструкции имеет недостатки, так как не исключает наличие дегрессивных остатков топлива, не в полной мере используется эффект эрозионного горения, требуется дополнительная тепловая защита корпуса двигателя со стороны соплового торца.
Задачей предлагаемого изобретения является повышение объемного заполнения камеры сгорания и использование топлива заряда для тепловой защиты сопловой части корпуса двигателя при обеспечении нейтральной диаграммы тяги двигателя.
Поставленная задача достигается тем, что щели в заряде как компенсатор прогрессивности горения представляют собой радиальные щели, расположенные в передней части двигателя симметричными парами с отношением углов между щелями одной пары и между смежными щелями соседних пар 0,1-0,4, при этом высота щелей составляет 0,3-0,7 величины свода заряда в месте расположения щелей, а длина щелей составляет 0,05-0,25 общей длины корпуса двигателя, величина свода заряда увеличивается по направлению к сопловому днищу двигателя.
Предлагаемая конструкция ракетного двигателя твердого топлива позволит:
- увеличить скорость газового потока в канале заряда, увеличивая тем самым скорость эрозионного горения топлива на остальной части заряда;
- уменьшить начальную поверхность щелей в 1,5-2 раза по сравнению с щелями соплового расположения и увеличить тем самым степень заполнения двигателя топливом;
- повысить теплостойкость корпуса в передней части, так как щели выполнены на величину 0,3-0,7 от полного горящего свода заряда;
- обеспечить горение заряда по закону, близкому к нейтральному, при выполнении щелей на такую глубину и симметричным расположением щелей по окружности;
- обеспечить требуемую дегрессивность горения щелевой части за счет расположения щелей парами с предложенным отношением углов между щелями одной пары и между смежными щелями соседних пар;
- исключить дегрессивно догорающие остатки и увеличить коэффициент объемного заполнения двигателя топливом за счет выполнения канала заряда цилиндрическим в передней части, где эрозионное горение незначительно, и коническим - в сопловой части с минимальным диаметром канала на торце заряда, обращенном к соплу;
- исключить необходимость дополнительной теплозащиты сопловой части корпуса за счет конусности канала, сужающегося к соплу, так как обеспечивается полное выгорание топлива одновременно по всей длине корпуса;
- обеспечить резкую отсечку тяги за счет отсутствия дегрессивно догорающих остатков и обеспечение нейтральной диаграммы тяги;
- снизить трудоемкость технологического процесса заполнения корпуса двигателя топливом за счет упрощения формообразующей оснастки (неразъемная игла канала топливного блока).
Сущность предлагаемого изобретения поясняется схемой продольного сечения двигателя, представленной на фиг.1, и схемами поперечных сечений двигателя, представленных на фиг.2 и 3.
Предлагаемый двигатель состоит из корпуса 1, с передним 2 и сопловым 3 днищами, защитно-крепящего слоя 4 и заряда 5 твердого топлива. Заряд 5 скреплен с корпусом 1 защитно-крепящим слоем 4. У переднего днища выполнены щели 6 высотой а, составляющей 0,3-0,7 от полного горящего овода заряда с в месте расположения щелей. Щели расположены симметричными парами. Отношение углов между щелями одной пары и между смежными щелями соседних пар α/β лежит в диапазоне 0,1-0,4. Длина щелей составляет 0,05-0,25 общей длины корпуса двигателя. Свод заряда 5 увеличивается по направлению к сопловому днищу двигателя за счет перехода цилиндрического канала со стороны переднего днища в сужающийся в сторону соплового днища конус. Конусность определяется из условия обеспечения одновременного выгорания свода заряда по всей длине двигателя.
Работа двигателя, выполненного в соответствии с предлагаемым изобретением, осуществляется следующим образом. В момент включения двигателя газоприход от щелевого компенсатора увеличивает скорость газового потока в канале заряда, способствуя росту скорости горения топлива за счет эрозионного эффекта. Так как щели выполнены не на полную глубину свода заряда и щели равномерно расположены по окружности, то щелевой участок горит по закону, близкому к нейтральному до достижения вершины щели стенки двигателя. Расположение щелей симметричными парами приводит к быстрому выгоранию топлива между щелями каждой пары. Наличие цилиндрического канала в передней части заряда и конической - в сопловой с минимальным диаметром канала на торце, обращенном к соплу, исключают дегрессивно догорающие остатки. Конусность канала обеспечивает одновременное выгорание свода по всей длине заряда.
Высота и длина щелей, отношение углов между щелями одной пары и между смежными щелями соседних пар и конусность канала определяются расчетным путем в каждом конкретном случае в зависимости от требований, предъявляемых к двигателю, и могут уточнятся в процессе экспериментальной отработки.
Работоспособность двигателя, выполненного в соответствии с предлагаемым изобретением, подтверждена огневыми стендовыми испытаниями.
Источник информации
1. Патент RU №2152529, 7 F02К 9/08 - прототип.
название | год | авторы | номер документа |
---|---|---|---|
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 2010 |
|
RU2461728C2 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 2008 |
|
RU2378523C1 |
Двухрежимный ракетный двигатель на твердом топливе | 2022 |
|
RU2783054C1 |
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА | 2006 |
|
RU2316669C2 |
ЗАРЯД СМЕСЕВОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА | 2012 |
|
RU2493400C1 |
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2003 |
|
RU2247252C2 |
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 1999 |
|
RU2150599C1 |
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА | 2006 |
|
RU2336431C1 |
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2001 |
|
RU2180049C1 |
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2007 |
|
RU2322603C1 |
Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива. Ракетный двигатель твердого топлива содержит корпус, переднее и сопловое днища, а также заряд твердого топлива, имеющий щели со стороны переднего днища двигателя. Заряд твердого топлива скреплен с корпусом защитно-крепящим слоем. Свод заряда увеличивается по направлению к сопловому днищу двигателя за счет перехода цилиндрического канала со стороны переднего днища в сужающийся в сторону соплового днища конус. Щели расположены симметричными парами с отношением углов между щелями одной пары и между смежными щелями соседних пар 0,1-0,4. Высота щелей а составляет 0,3-0,7 величины полного горящего свода заряда с. Длина щелей составляет 0,05-0,25 общей длины корпуса двигателя. Изобретение позволяет повысить объемное заполнение камеры сгорания, а также использовать топливный заряд для тепловой защиты сопловой части корпуса двигателя при обеспечении нейтральной диаграммы тяги двигателя. 3 ил.
Ракетный двигатель твердого топлива, содержащий корпус, переднее и сопловое днища, а также заряд твердого топлива, имеющий щели со стороны переднего днища двигателя, отличающийся тем, что заряд твердого топлива скреплен с корпусом защитно-крепящим слоем, свод заряда увеличивается по направлению к сопловому днищу двигателя за счет перехода цилиндрического канала со стороны переднего днища в сужающийся в сторону соплового днища конус, а щели расположены симметричными парами с отношением углов между щелями одной пары и между смежными щелями соседних пар 0,1-0,4, при этом высота щелей а составляет 0,3-0,7 величины полного горящего свода заряда с, а длина щелей составляет 0,05-0,25 общей длины корпуса двигателя.
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1999 |
|
RU2152529C1 |
Приспособление для развальцовки уплати и тельных колец | 1940 |
|
SU59142A1 |
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 1999 |
|
RU2145673C1 |
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА | 2003 |
|
RU2247252C2 |
US 4015427 А, 05.04.1977 | |||
ПРИСПОСОБЛЕНИЕ ДЛЯ АВТОМАТИЧЕСКОГО ПУСКА В ХОД ТУШАЩИХ ПРИБОРОВ | 1923 |
|
SU1082A1 |
Авторы
Даты
2007-04-27—Публикация
2005-05-03—Подача