СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2012 года по МПК B22F9/16 B82B3/00 

Описание патента на изобретение RU2462332C2

Изобретение относится к области нанотехнологий и наноматериалов и касается получения нанодисперсных порошков (НП).

Существующие на сегодняшний день методы получения НП (механические, физико-химические и химические) обладают очень существенным недостатком, который заключается в низкой производительности, которая обусловлена как собственной природой, так и конкретными схемами организации рабочих процессов в установках обработки исходного материала, которые не позволяют применять их для создания эффективных технологий промышленного получения НП с заданными свойствами.

Наиболее близким к предлагаемой технологии аналогом решения проблемы синтеза НП материалов с заданным химическим составом и физическими свойствами является способ синтеза НП в плазме сверхвысокочастотного (СВЧ) разряда [1].

Способ получения НП в плазме СВЧ разряда включает введение исходных реагентов в поток плазмообразующего газа реакционной камеры, плазмохимический синтез реагентов, охлаждение целевого продукта и его выделение из реакционной зоны через фильтр-сборник, при этом исходные реагенты вводят в поток плазмообразующего газа, имеющего среднемассовую температуру 1200-3200 К, в любом агрегатном состоянии: парообразном, порошкообразном, жидкокапельном или в любой их комбинации, при этом реагенты в порошкообразном состоянии вводят в виде аэрозоля с газом-носителем в реакционную камеру через узел ввода с отверстием, открывающимся в объем реакционной камеры под углом 45-60° к оси камеры, реагенты в парообразном или в жидкокапельном состоянии вводят в реакционную камеру через соответствующие узлы ввода с кольцевым коллектором, выполненным с 6-12 отверстиями, открывающимися в объем реакционной камеры под углом 45-60° к оси камеры, каждое из которых обдувается спутным потоком газа через коаксиальные каналы вокруг отверстий, при расходе исходных реагентов, плазмообразующего газа, удельной мощности микроволнового излучения, длины реакционной зоны, позволяющих получать композиционные системы и индивидуальные вещества с заданными свойствами, химическим, фазовым составом и дисперсностью. Для дополнительного охлаждения целевого продукта через коллектор снизу одной из секций реакционной камеры подают закалочный газ с расходом 1,6-2,0 м3/г.

Известна установка синтеза НП, содержащая систему подачи, камеру первичного смешения и воспламенения, камеру вторичного смешения, сжигания и синтеза, и устройство отбора конденсированной фазы из высокотемпературного потока [2].

В указанной установке не предоставляется возможность управлять параметрами рабочего процесса в КС.

К недостаткам способа и устройства получения НП в плазме СВЧ относится низкая производительность, высокие затраты энергии и недостаточное качество синтезируемых НП.

Задачами заявляемого способа является повышение производительности и снижение энергетических затрат при получении НП.

Задачей заявляемого устройства является получение НП заданного гранулометрического состава путем изменения таких параметров как давление, температура в камере сгорания (КС) и время пребывания частиц в зоне горения.

Поставленные задачи для способа получения НП, включающего подачу и смешивание исходного порошкообразного металла (ИПМ) с потоком первичного активного газа, истекающего из сопла эжектора, воспламенение металло-газовой смеси (МГС) в предкамере, представляющей собой канал с расширением, подачу смеси в основную КС, охлаждение высокотемпературных продуктов горения и отбор НП, решаются путем перевода в газовую фазу частиц ИПМ за счет самоподдерживающейся экзотермической реакции с последующей конденсацией из газовой фазы, причем в основную КС подают вторичный активный газ и посредством лопаточного завихрителя формируют в ней центральную тороидальную вихревую зону.

Поставленная задача для устройства, включающего бункер ИПМ, эжектор, сопло эжектора, камеру смешения ИПМ с потоком первичного активного газа, предкамеру в виде канала с расширением, основную КС, канал для охлаждения продуктов горения и бункер отбора НП, достигается тем, что на внешней стенке предкамеры установлен лопаточный завихритель, обеспечивающий формирование центральной тороидальной вихревой зоны (ЦТВЗ) в основной КС, а в стенке основной КС выполнены отверстия для поперечного вдува вторичного активного газа.

На фиг.1 схематически изображено предлагаемое устройство для получения НП, включающее эжектор 1, сопло эжектора 2, бункер ИПМ 3, камеру смешения ИПМ с потоком первичного активного газа 4, предкамеру в виде канала с внезапным расширением 5, штуцер подачи активного газа в лопаточный завихритель 6, электрическую свечу зажигания 7, лопаточный завихритель 8, основную КС 9, штуцер подачи вторичного активного газа 10, коллектор 11 с отверстиями 12 для поперечного вдува вторичного активного газа, штуцер 13 для подвода охлаждающей жидкости в канал 14, содержащий форсунки 15, циклонную камеру 16 с каналом выхода газовой фазы 17 и бункером отбора дисперсной фазы 18.

При работе устройства струя первичного активного газа, истекающая из сопла 2 эжектора 1, смешивается с ИПМ 3 в камере смешения 4, образуя МГС. Полученная МГС поступает в предкамеру в виде канала с внезапным расширением 5, в котором происходит надежное воспламенение МГС от электрической свечи зажигания 7 [4]. Воспламенившаяся МГС из предкамеры поступает в основную КС 9, где она перемешивается с воздухом, поступающим через штуцер 6, который, проходя через лопаточный завихритель 8, приобретает закрутку, под действием которой образуется ЦТВЗ, где создается область пониженного давления, увеличивается время пребывания частиц металла и осуществляется основное горение МГС. Интенсификация процесса догорания обеспечивается путем поперечного вдува вторичного активного газа через отверстия 12, поступающего в коллектор 11 через штуцер 10. Высокотемпературные продукты горения поступают в канал 14 для охлаждения, посредством впрыска дистиллированной воды через форсунки 15, подвод воды к которым осуществляется посредством штуцера 13. Охлажденные продукты горения поступают в циклонную камеру 16, в которой газ выходит через штуцер 17, а конденсированные продукты поступают в камеру отбора НП 18.

Описанное устройство позволяет получать порошок оксида алюминия в диапазоне размеров от 10 до 100 нм с производительностью до 60 г/сек при расходе исходного порошка алюминия 300 г/сек. В качестве исходного порошкообразного металла применялся порошок алюминия марки АСД-1 с размером частиц 17,4 мкм. В качестве активного газа использовался воздух. Скорость первичной струи активного газа составляла от 50 до 100 м/с, при этом скорость поперечного вдува вторичного активного газа была сверхзвуковой. Параметр закрутки активного газа лопаточным завихрителем был равен 2,0 [5].

Таким образом, предлагаемый способ и устройство получения нанодиспесных порошков решает поставленные задачи:

1) повышение производительности, осуществляемой за счет высокой интенсивности процессов, включая скорости тепломассообмена, высоких температур (порядка 3000 К) и, как следствие, высоких скоростей протекающих физико-химических процессов;

2) снижение энергоемкости достигается отсутствием необходимости подвода энергии извне, поскольку образование целевого продукта происходит в результате самоподдерживающейся экзотермической реакции;

3) получение НП необходимого гранулометрического состава достигается применением закрутки воздушного потока и созданием ЦТВЗ в КС, а также посредством поперечного вдува активного газа.

Источники информации

1. RU 2252817 С1, В01J 19/08, 27.05.2010.

2. В.Н.Анциферов, В.И.Малинин, С.Е.Порозова, А.Ю.Крюков. Получение нанодисперсных порошков методом сжигания аэровзвесей частиц металлов / Перспективные материалы и технологии: Нанокомпозиты. Том 2. /Под. ред. А.А.Берлина и И.Г.Ассовского. - М.: ТОРУС ПРЕСС, 2005 - 288 с.: ил. (Космический вызов 21 века).

3. Гупта А. и др. Закрученные потоки: Пер. с англ./ Гупта А., Лилли Д., Сайред Н. - М.: Мир, 1987. - 588 с.

4. А.Г.Егоров, К.В.Мигалин, А.П.Шайкин. Экспериментальное исследование процессов воспламенения и стабилизации пламени порошкообразного алюминия в камере сгорания с внезапным расширением / Изв. вузов «Авиационная техника», Казань, 1989, №2, стр.85-86.

5. В.И.Малинин. Внутрикамерные процессы в установках на порошкообразных металлических горючих. Екатеринбург - Пермь: УрО РАН, 2006.

Похожие патенты RU2462332C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Малинин Владимир Игнатьевич
  • Шатров Алексей Владимирович
  • Русинов Глеб Владимирович
  • Федоровцев Павел Игоревич
  • Земерев Евгений Сергеевич
  • Болховских Денис Александрович
RU2533580C2
КОМБИНИРОВАННАЯ ГОРЕЛКА 1998
  • Иванов А.П.
  • Голубых А.К.
  • Чистой Г.Г.
  • Кузьменко Е.Б.
RU2142096C1
МАЛОЭМИССИОННАЯ КАМЕРА СГОРАНИЯ 2019
  • Юсеф Висам Махмуд
  • Сыченков Виталий Алексеевич
  • Давыдов Николай Владимирович
  • Мухаметгалиев Тимур Хатипович
  • Волостнов Геннадий Васильевич
RU2745174C2
Горелочное устройство малоэмиссионной камеры сгорания и способ регулирования расхода воздуха, поступающего в него 2021
  • Бубенцов Алексей Витальевич
  • Ташкинов Валерий Александрович
  • Шошин Борис Васильевич
  • Ломохова Екатерина Владимировна
RU2781670C1
СПОСОБ И УСТРОЙСТВО ДЛЯ СЖИГАНИЯ ТВЁРДОГО ТОПЛИВА 2002
  • Новиков Н.Н.
RU2202069C1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБ ОТ ОТЛОЖЕНИЙ 2004
  • Скворцов Ювеналий Михайлович
RU2282504C2
УСТРОЙСТВО ДЛЯ ПАРОФАЗНОГО ГИДРОЛИЗА ХЛОРИДОВ МЕТАЛЛОВ 1991
  • Антипов И.В.
  • Крохин В.А.
  • Заиканов В.Н.
  • Третьяков Д.С.
  • Булгаков В.Н.
  • Мальцев Н.А.
  • Мельников Л.В.
  • Жуланов Н.К.
RU2020130C1
ПИРОЛИЗНАЯ ТЕРМОГАЗОХИМИЧЕСКАЯ УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ 2010
  • Коропчук Александр Петрович
RU2428629C1
СПОСОБ И УСТРОЙСТВО ДЛЯ СЖИГАНИЯ ТОПЛИВА 2001
  • Новиков Н.Н.
RU2215941C2
КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 1995
  • Кузменко М.Л.
  • Симонов В.Е.
  • Андрюков Н.А.
  • Кириевский Ю.Е.
RU2111416C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к технологии получения нанодисперсных порошков. Технический результат - повышение производительности получения порошка, снижение энергоемкости. Способ получения нанодисперсных порошков включает подачу и смешивание исходного порошкообразного металла с потоком первичного активного газа, истекающего из сопла эжектора, воспламенение металло-газовой смеси в предкамере, представляющей собой канал с расширением, подачу смеси в основную камеру сгорания, охлаждение высокотемпературных продуктов горения и отбор нанодисперсного порошка. При этом частицы исходного порошка металла переводят в газовую фазу за счет самоподдерживающейся экзотермической реакции с последующей конденсацией из газовой фазы. Причем в основную камеру сгорания подают вторичный активный газ и посредством лопаточного завихрителя формируют в ней центральную тороидальную вихревую зону. Устройство для реализации способа содержит бункер исходного порошка, эжектор с соплом, камеру смешения исходного порошка с потоком первичного активного газа, предкамеру в виде канала с расширением, основную камеру сгорания, канал для охлаждения продуктов горения и бункер отбора порошка. На внешней стенке предкамеры установлен лопаточный завихритель, а в стенке основной камеры сгорания выполнены отверстия для поперечного вдува вторичного активного газа. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 462 332 C2

1. Способ получения нанодисперсных порошков, включающий подачу и смешивание исходного порошка металла с потоком первичного активного газа, истекающего из сопла эжектора, воспламенение металло-газовой смеси в предкамере, представляющей собой канал с расширением, подачу смеси в основную камеру сгорания, охлаждение высокотемпературных продуктов горения и отбор нанодисперсного порошка, при этом для получения нанодисперсных порошков частицы исходного порошка металла переводят в газовую фазу за счет самоподдерживающейся экзотермической реакции с последующей конденсацией из газовой фазы, причем в основную камеру сгорания подают вторичный активный газ и посредством лопаточного завихрителя формируют в ней центральную тороидальную вихревую зону.

2. Устройство получения нанодисперсных порошков, включающее бункер исходного порошка металла, эжектор, сопло эжектора, камеру смешения исходного порошка металла с потоком первичного активного газа, предкамеру в виде канала с расширением, основную камеру сгорания, канал для охлаждения продуктов горения и бункер отбора нанодисперсного порошка, при этом на внешней стенке предкамеры установлен лопаточный завихритель, обеспечивающий формирование центральной тороидальной вихревой зоны в основной камере сгорания, а в стенке основной камеры сгорания выполнены отверстия для поперечного вдува вторичного активного газа.

Документы, цитированные в отчете о поиске Патент 2012 года RU2462332C2

УСТАНОВКА И СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ В ПЛАЗМЕ СВЧ РАЗРЯДА 2003
  • Балихин И.Л.
  • Берестенко В.И.
  • Домашнев И.А.
  • Куркин Е.Н.
  • Троицкий В.Н.
RU2252817C1
RU 2007123092 A, 27.12.2008
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ МЕТАЛЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Усенко Ю.А.
  • Баглаев К.М.
RU2061584C1
МГД-ГЕНЕРАТОР 2001
  • Грицкевич О.В.
  • Грицкевич Б.О.
  • Белошицкий Н.П.
  • Грабовой Г.П.
  • Герасимов А.Ф.
  • Джанибеков В.А.
  • Коровяков Н.И.
  • Никитин А.Н.
  • Петухов В.А.
  • Поляшов Л.И.
RU2174735C1
US 20050050993 A1, 10.03.2005.

RU 2 462 332 C2

Авторы

Егоров Александр Григорьевич

Малинин Владимир Игнатьевич

Сафронов Александр Иванович

Иванин Сергей Викторович

Тизилов Андрей Сергеевич

Даты

2012-09-27Публикация

2010-12-21Подача