ЭНДОТЕРМИЧЕСКАЯ СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКИХ АППАРАТОВ Российский патент 2012 года по МПК B64G1/50 F28D15/00 

Описание патента на изобретение RU2463222C1

Изобретение относится к космической технике и может быть использовано для обеспечения требуемого температурного режима в герметичных отсеках космических аппаратов и станций. Система терморегулирования (СТР) предназначена для применения на космических аппаратах (КА) в условиях космического пространства, где необходимо поддерживать заданный температурный режим как всего космического объекта, так и его отдельных элементов.

Известна система терморегулирования космического аппарата и орбитальной станции (B64G 1/50, RU 2148540 от 08.02.1999 г.), содержащая контуры охлаждения и обогрева, связанные через жидкостно-жидкостные теплообменники. Тепло из контура обогрева через указанные теплообменники передается контуру охлаждения и излучается с поверхности радиационного теплообменника. Последний снабжен регулятором расхода теплоносителя с шаговым двигателем. В контуре охлаждения имеются два электронасосных агрегата.

Задачей изобретения является повышение эффективности системы терморегулирования в части увеличения ее производительности и минимизации массы обслуживающих подсистем для уменьшения размеров КА. Для этого предлагается использовать магнитно-гидродинамические (МГД) насосы и токопроводящие экзотермические теплоносители.

Анализ структуры существующих СТР показывает, что она содержит три типа электромеханических агрегатов: электронасосные агрегаты, регуляторы расхода жидкости и вентиляторы. От степени совершенства этих агрегатов в значительной мере зависят энергомассовые характеристики и показатели надежности CTP.

Почти вся потребляемая на борту энергия, в конечном счете превращается в тепло. К этому добавляется нагрев солнечным излучением. На космических аппаратах, чтобы избежать перегрева, необходимо активно избавляться от лишнего тепла. Теплоотдача излучением пропорциональна площади поверхности и, по закону Стефана-Больцмана, четвертой степени ее температуры. Чем больше и сложнее аппарат, тем труднее его охлаждать. Дело в том, что энерговыделение растет пропорционально его массе, то есть кубу размера, а площадь поверхности - пропорционально только квадрату. Если спутник увеличился в 10 раз - масса и энергетика выросли при этом в 1000 раз, а площадь поверхности - только в 100. Значит, с единицы площади должно уходить в 10 раз больше излучения. Чтобы обеспечить это, абсолютная температура поверхности спутника (в Кельвинах) должна стать выше в 1,8 раза (4√-10). Например, вместо 293 K (20°C)-527 K (254°C). Понятно, что так нагревать аппарат нельзя. Поэтому современные спутники, выйдя на орбиту, ощетиниваются не только панелями солнечных батарей и раздвижными антеннами, но и радиаторами, как правило, торчащими перпендикулярно поверхности аппарата, направленной на Солнце.

Но сам радиатор - это лишь один из элементов системы терморегулирования. Ведь к нему еще надо подвести подлежащее сбросу тепло. Наибольшее распространение получили активные жидкостные и газовые системы охлаждения замкнутого типа. Теплоноситель обтекает греющиеся блоки аппаратуры, затем поступает в радиатор на наружной поверхности аппарата, отдает тепло и снова возвращается к его источникам (примерно так же работает система охлаждения в автомобиле). В систему терморегулирования, таким образом, входят разнообразные внутренние теплообменники, газоводы и вентиляторы, электронасосы.

В предлагаемом изобретении требуемый технический результат достигается тем, что в отличие от известной СТР, электронасосы и вентиляторы, содержащие трущиеся элементы в своей конструкции, заменены на МГД-насос, устройство, предназначенное для перемещения электропроводящих жидкостей под воздействием магнитного поля и использования токопроводящих экзотермических теплоносителей. Система терморегулирования искусственных спутников показана на Фиг.1, где:

1 - корпус;

2 - магнитогидродинамический насос;

3 - теплообменник;

4 - радиатор;

5 - резервуар теплоносителя;

6 - управляющий клапан;

7 - травящий клапан;

8 - контур охлаждения и обогрева.

Система работает следующим образом: тепло от греющихся блоков аппаратуры КА передается теплоносителю, циркулирующему по внутреннему контуру охлаждения и обогрева 8. Нагретый теплоноситель после теплообменников 3 подается МГД-насосом 2 на радиатор 4, излучающий тепло в наружное пространство. Для предотвращения выхода системы из строя дополнительно введен резервуар теплоносителя 5 с управляющим клапаном 6. При понижении давления в системе клапан 6 обеспечивает дополнительную подачу теплоносителя, при повышении его происходит стравливание избыточного давления через клапан 7.

В качестве теплоносителя предлагаем использовать тетраоксид азота с добавлением H2O, жидкость токопроводящую (для работы МГД-насоса) и экзотермическую (при повышении температуры химической смеси идет процесс поглощения тепла).

Тетраоксид азота (N2O4) - подвижная жидкость с TКИП=22,4°C, TПЛАВ=-11,2°C, работа с ним при температуре, большей, чем температура кипения, без изменения агрегатного состояния, требует повышения давления в системе (незначительно до 1,5 атм), для снижения же температуры замерзания требуется добавление NO. В чистом виде N2O4 ток практически не проводит, добавление небольшого количества воды существенно увеличивает электропроводность, но также вместе с этим повышается коррозионная активность вещества. Эта проблема может быть разрешена введением небольшого количества HF в качестве ингибитора. На стенках магнитодинамического насоса HF образует защитную фторидную пленку, которая предотвращает дальнейшую коррозию. По электропроводности и коррозионной активности N2O4 аналогичен оксиду азота (IV) (NO2). Тетраоксид азота при повышении температуры распадается по уравнению N2O4→2NO2, чем выше температура, тем в большей степени совершается этот распад, при охлаждении же наступает обратная реакция NO2+NO2→N2O4. Химическая формула эндотермической реакции представлена на Фиг.2. Процесс распада N2O4 протекает в интервале температур 27-135°C, реакция является обратимой, обратная реакция протекает при охлаждении вещества 135-27°C. Реакция N2O4→2NO2 является эндотермической и сопровождается поглощением 13 кал тепла. N2O4 является токсичным веществом, при обращении с ним необходимо использовать средства индивидуальной защиты кожи и органов дыхания.

Похожие патенты RU2463222C1

название год авторы номер документа
АВТОНОМНАЯ СИСТЕМА ЭНЕРГОСНАБЖЕНИЯ КОСМИЧЕСКИХ АППАРАТОВ 2015
  • Куканков Сергей Николаевич
RU2584607C1
Комбинированный двигатель летательного аппарата 2018
  • Слесарев Денис Федорович
  • Тарарышкин Вадим Иванович
RU2693951C1
СПОСОБ ИСПЫТАНИЙ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Акчурин В.П.
  • Бартенев В.А.
  • Близневский А.С.
  • Головенкин Е.Н.
  • Загар О.В.
  • Козлов А.Г.
  • Корчагин Е.Н.
  • Попов В.В.
  • Роскин С.М.
  • Талабуев Е.С.
  • Томчук А.В.
  • Туркенич Р.П.
  • Халиманович В.И.
  • Шилкин О.В.
RU2209751C2
СПОСОБ ТЕРМОСТАБИЛИЗАЦИИ ЭЛЕКТРОННОЙ АППАРАТУРЫ 2016
  • Дроздов Игорь Геннадьевич
  • Иванов Александр Сергеевич
  • Калинин Юрий Егорович
  • Шматов Дмитрий Павлович
  • Чуйко Артем Георгиевич
  • Кружаев Константин Владимирович
  • Коновалов Дмитрий Альбертович
  • Кожухов Николай Николаевич
  • Дахин Сергей Викторович
RU2630948C1
СПОСОБ КОМПОНОВКИ КОСМИЧЕСКОГО АППАРАТА 2007
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Близневский Александр Сергеевич
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
  • Загар Олег Вячеславович
  • Роскин Сергей Михайлович
  • Попов Василий Владимирович
  • Юровских Андрей Петрович
  • Синьковский Федор Константинович
  • Шилкин Олег Валентинович
  • Кувакин Константин Леонардович
  • Голованов Юрий Матвеевич
  • Колесников Анатолий Петрович
RU2369537C2
СПОСОБ ТЕРМОРЕГУЛИРОВАНИЯ ОБЪЕКТА, РАСПОЛОЖЕННОГО НА КОСМИЧЕСКОМ АППАРАТЕ, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Глухих Игорь Николаевич
  • Челяев Владимир Филиппович
RU2467931C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2001
  • Акчурин В.П.
  • Алексеев Н.Г.
  • Буткина Н.Ф.
  • Никитин В.Н.
  • Петрусевич В.Г.
  • Шилкин О.В.
RU2221732C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2008
  • Акчурин Владимир Петрович
  • Алексеев Николай Григорьевич
  • Загар Олег Вячеславович
  • Кривов Евгений Владимирович
  • Кульков Алексей Александрович
  • Сергеев Юрий Дмитриевич
  • Скороходов Даниил Игоревич
  • Убиенных Александр Вячеславович
  • Шилкин Олег Валентинович
  • Юртаев Евгений Владимирович
RU2384491C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО ОБЪЕКТА 2009
  • Лукащук Иван Петрович
  • Ткаченко Виктор Иванович
  • Арефьева Татьяна Николаевна
  • Китаев Александр Ирикович
  • Быков Сергей Михайлович
  • Гаврилова Екатерина Сергеевна
RU2404092C1
СИСТЕМА АВАРИЙНОГО ОТВОДА ЭНЕРГОВЫДЕЛЕНИЙ АКТИВНОЙ ЗОНЫ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ 2016
  • Ошканов Николай Николаевич
  • Щеклеин Сергей Евгеньевич
  • Попов Александр Ильич
RU2622408C1

Иллюстрации к изобретению RU 2 463 222 C1

Реферат патента 2012 года ЭНДОТЕРМИЧЕСКАЯ СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКИХ АППАРАТОВ

Изобретение относится к космической технике и касается обеспечения требуемого температурного режима в герметичных отсеках космических аппаратов и станций. Эндотермическая система терморегулирования космических аппаратов содержит корпус (1), контур охлаждения и обогрева (8), теплообменники (3), радиатор (4). В эндотермической системе терморегулирования используется магнитогидродинамический насос (МГД-насос) (2). В качестве теплоносителя используется токопроводящий экзотермический теплоноситель, например тетраоксид азота с добавлением воды. Для предотвращения выхода системы из строя дополнительно введен резервуар теплоносителя (5) с управляющим клапаном (6). При понижении давления в системе клапан (6) обеспечивает дополнительную подачу теплоносителя, при повышении давления происходит стравливание избыточного давления через клапан (7). Достигается повышение эффективности системы терморегулирования в части увеличения производительности терморегулирования и минимизации массы обслуживающих подсистем для уменьшения размеров космического аппарата. 2 ил.

Формула изобретения RU 2 463 222 C1

Эндотермическая система терморегулирования космических аппаратов, содержащая корпус, контур охлаждения и обогрева, теплообменники, радиатор, отличающаяся тем, что дополнительно введены магнитогидродинамический насос, резервуар теплоносителя, управляющий клапан, травящий клапан и токопроводящий экзотермический теплоноситель.

Документы, цитированные в отчете о поиске Патент 2012 года RU2463222C1

Теплопередающее устройство 1975
  • Базаров В.Г.
  • Душкин А.Л.
SU646648A1
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ХЛАДАГЕНТА В КАПЕЛЬНОМ РАДИАТОРЕ КОНТУРА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Ковтун Владимир Семенович
  • Синявский Виктор Васильевич
  • Костюк Любовь Николаевна
  • Сагина Жанна Валерьевна
  • Грибков Александр Сергеевич
RU2400408C1
US 2010006269 А1, 14.01.2010
US 2008036076 А1, 14.02.2008.

RU 2 463 222 C1

Авторы

Куканков Сергей Николаевич

Федорищев Олег Николаевич

Куканков Сергей Сергеевич

Цибакин Константин Анатольевич

Даты

2012-10-10Публикация

2011-05-25Подача