КЛАТРАТНЫЙ КОМПЛЕКС β-ЦИКЛОДЕКСТРИНА С ПРОИЗВОДНЫМ 5-ГИДРОКСИ-4-АМИНОМЕТИЛ-1-ЦИКЛОГЕКСИЛ(ИЛИ ЦИКЛОГЕПТИЛ)-3-АЛКОКСИКАРБОНИЛИНДОЛА, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И ЛЕКАРСТВЕННОЕ СРЕДСТВО Российский патент 2012 года по МПК A61K47/48 C08B37/16 A61K31/724 C07D209/42 A61P31/12 A61P31/16 A61K31/404 B82B3/00 

Описание патента на изобретение RU2464042C1

Изобретение относится к новым клатратным комплексам (соединениям включения) β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола, обладающим противовирусным действием, и способам их получения. Клатратные комплексы могут найти применение в фармацевтической промышленности. Изобретение также относится к композициям и лекарственным средствам на основе новых клатратных комплексов циклодекстрина.

В настоящее время комплексы активных веществ с циклодекстринами нашли свое применение не только в фармацевтике, но и в косметологии. Например, существуют и пользуются спросом комплексы фитоаминокислот в составе циклодекстриновой капсулы. Известны аналогичные комплексы циклодекстрина с моносахаридами, уроновыми кислотами.

Получение клатратных комплексов в решении проблем транспорта лекарственных средств оказывает существенное влияние практически на каждый способ введения от перорального до инъекционного. Описана перспектива развития систем целевой доставки и систем транспортирования через слизистые оболочки (см. патент РФ 2005115883, опубл. 2006). Оценка общего потенциала систем транспортирования лекарственных средств на основе комплексов включения описана в патенте РФ 2121830, опубл. в 1998 г.

Новые формы и пути транспортирования лекарственных средств могут расширить терапевтический потенциал назначаемого лечения. Технологии транспортирования лекарственных веществ на основе комплексов могут в значительной степени изменить существующие лекарства, улучшая их биодоступность, позволяя снизить терапевтическую дозу. В патенте РФ 2121830, опубл. в 1998 г., описана водорастворимая лекарственная композиция и способ ее получения для таких известных препаратов, как Сибазон, Азалептин, Мезапам, Индометацин. Фармакологические испытания полученных комплексов на лабораторных животных показали снижение терапевтической дозы ЛС в несколько раз.

Молекулы циклодекстринов имеют тороидальную форму, причем ее внутренняя полость гидрофобна. Водорастворимые межмолекулярные комплексы липофильных органических соединений образуются в растворе за счет интеркаляции их молекул в эту полость. Известны комплексы β-циклодекстрина с нестероидными противовоспалительными средствами (парацетамол, ибупрофен, кетопрофен, флуфенамовая и мефенамовая кислоты и др.), стероидами, простагландинами и простациклинами, барбитуратами, сульфонамидами, сердечными гликозидами и другими препаратами (см. например, патенты US 4524068, US 4727064, патент РФ 2337710, опублик. в 2008, J.Szejtli, Industrial Applications of cyclodextrins. - In Inclusion Compounds, v.3. ed. Atwood J.L., Davies J.E., Menicob D.D., Academic Press, N-Y., 1984, p.331-390).

Известно также множество публикаций о соединениях включения (клатратных комплексах) α- или β-циклодекстринов с противовирусными соединениями, способах их получения и применении (см., например, заявку РФ 2005114097, патенты РФ 2288921, 2377243, 2247576, DE 19814815 A1, DE 19814814 A1, US 4956351, US 5221669, заявки US 2005/0209189, US 2005/0281872, US 2009/0286757, JP 10-045319, JP 58-092691, JP-2005-179329 JP-9-015632). Например, в патенте РФ 2128664, опублик. 10.04.1999 описаны соединения включения 9-(2-оксиэтоксиметилгуанина(ацикловиров) с β-циклодекстрином, обладающего антигерпесной активностью, а также жидкофазный и твердофазный способы их получения. Жидкофазный способ заключается в поэтапном растворении компонентов при определенном соотношении в воде или водно-спиртовых растворах при нагревании, с последующей концентрацией образовавшегося продукта и выделением готового продукта. Твердофазный метод заключается в механическом измельчении смеси кристаллического ацикловира и β-циклодекстрина в вибромельнице. При этом продукт остается кристаллическим в виде мелкодисперсного подвижного порошка. В патентах РФ 2242974, 2357968, 2377243 описаны кристаллические формы и наноформы клатратов циклодекстрина и противовоспалительных средств. В патенте РФ 2377243 описывается твердофазный способ, который включает получение твердых дисперсий компонентов с последующим необязательным размалыванием или растиранием данной дисперсии.

В патенте РФ 2386616 описываются производные 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндолов, а также их фармацевтически приемлемые соли, обладающие противовирусной активностью.

Задачей настоящего исследования является изыскание новых клатратных комплексов β-циклодекстрина с противовирусным соединением, представляющих собой производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола, обладающих повышенной растворимостью в воде, улучшенной биодоступностью. Предлагаемые клатратные комплексы позволяют уменьшить дозировки лекарственного средства, а следовательно, уменьшить токсичность препарата. Задачей настоящего изобретения также является разработка новых способов получения клатратных комплексов и их применение в фармацевтических композициях и лекарственных средствах.

Настоящее изобретению относится к новым клатратным комплексам β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбо-илиндола, соответствующим общей формуле (I), при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбоиилиндола:β-циклодекстрин от 1:1 до 1:5.

где Х означает - водород, хлор, йод, n=1 или 2,

R3-C13 алкил,

ALK - означает C16 алкильную группу,

R1, R2 независимо выбираются из С14-алкила, преимущественно метила, или R1 и R2 вместе с атомом азота (т.е. группа -NR1R2) означает группы, соответствующие формулам,

в которых Bn - бензил, а Ph - фенил

К фармацевтически приемлемым солям относятся, прежде всего, гидрогалогениды, например гидрохлориды, мезилаты, оксалаты, тозилаты, малонаты, фосфаты и др.

Предпочтительным клатратным комплексом является комплекс β-циклодекстрина с этиловым эфиром 5-гидрокси-4-диметиламино-2-метил-1-циклогексил-1Н индол-3-карбоновой кислоты (формула (II)) и его гидрохлорид (соединение А).

Необходимо отметить, что в клатратном комплексе мольные соотношения производных 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола:β-циклодекстрин варьируются в интервале от 1:1 до 1:5, позволяя нацело перевести соединение в клатратный комплекс, что существенно влияет на его биодоступность.

При этом обнаружено, что клатратный комплекс, как и нанокомплекс, предлагаемый согласно настоящему изобретению, обладает противовирусным действием и может быть использован для получения большинства применяемых в медицине лекарственных форм и путей введения.

Изобретение также относится к фармацевтической композиции, обладающей противовирусным действием, включающей в эффективном количестве вышеуказанный клатратный комплекс β-циклодекстрина с производными 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) (возможно в виде наночастиц) при мольном соотношении, указанном выше, и фармацевтически приемлемые наполнители.

Изобретение также относится к лекарственному средству в виде капсул или таблеток в фармацевтически приемлемой упаковке, содержащему клатратный комплекс β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) при мольном соотношении, указанном выше, или фармацевтическую композицию на его основе в эффективном количестве.

При этом клатратный комплекс может быть использован в фармацевтической композиции или в лекарственном средстве в виде наночастиц с размером менее 100 нм

Понятие «эффективное количество», используемое в данной заявке, подразумевает использование того количества соединения формулы (I), которое вместе с его показателями активности и токсичности, а также на основании знаний специалиста должно быть эффективным в данной фармацевтической композиции или лекарственной форме.

При необходимости фармацевтическая композиция может содержать вспомогательные средства, такие как наполнители, увлажнители, эмульгаторы, суспендирующие агенты, загустители, подсластители, отдушки, ароматизаторы. Фармацевтически приемлемые добавки могут быть выбраны, например, из микроцеллюлозы, лактозы, стеарата кальция, крахмала. Выбор и соотношение указанных компонентов зависит от природы и способа назначения и дозировки.

Содержание активного ингредиента составляет обычно от 1 до 20 вес.%, в сочетании с одной или более фармацевтически приемлемыми добавками, такими как разбавители, связующие, разрыхляющие агенты, адсорбенты, ароматизирующие вещества, вкусовые агенты.

Указанная фармацевтическая композиция и лекарственное средство могут быть получены известными в фармацевтике способами.

Для получения фармацевтической композиции активный ингредиент (соединение формулы (I)) смешивают с фармацевтически приемлемым носителем и, при необходимости, с соответствующими добавками.

Лекарственное средство может быть в жидкой или твердой форме.

Примерами твердых лекарственных форм являются, например, таблетки, пилюли, желатиновые капсулы и др. Примерами жидких лекарственных форм для инъекций и парентерального введения являются растворы, эмульсии, суспензии и др. Получение указанных лекарственных форм осуществляется традиционными для фармацевтики методами - смешением компонентов, таблетированием, капсулированием и т.д.

Клатратные комплексы, предлагаемые согласно настоящему изобретению, могут быть получены двумя путями:

1) жидкофазным методом синтеза

2) твердофазным методом синтеза.

Жидкофазный способ заключается в том, что готовят водноый раствор исходного β-циклодекстрина и спиртовой соответствующего производного 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола, которые затем смешивают при перемешивании и нагревании до температуры не выше 75°C, при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола или его фармацевтически приемлемая соль: β-циклодекстрин от 1:1 до 1:5 с последующим перемешиванием при указанной температуре до получения однородного раствора и выделением полученного кристаллического клатратного комплекса. Согласно настоящему способу получают нековалентные клатратные комплексы, стабилизированные водородными связями. Нековалентный комплекс - комплекс, который образуется между молекулами веществ в подходящем растворителе за счет межмолекулярного ван-дер-ваальсового взаимодействий нековалентной природы, а именно - водородного связывания.

Твердофазный метод заключается в том, что β-циклодекстрин и кристаллическое производное 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбо-нилиндола или его фармацевтически приемлемая соль при температуре 30-60°C, подвергают перемалыванию со скоростью от 400 об/мин до 800 об/мин в период времени от 10 до 60 мин, как правило на планетарной шаровой мельнице, в режимах от Ударно-Сдвигового до Ударного, при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола или его фармацевтически приемлемая соль:β-циклодекстрин от 1:1 до 1:5 (для соединения А оптимальными являются соотношения 1:1 и 1:2), с выделением полученного кристаллического клатратного комплекса, при необходимости, в виде наночастиц с размером частиц менее 100 нм.

Из теории механосинтеза известно, что пластическая деформация твердого тела обычно приводит не только к изменению формы твердого тела, но и к накоплению в нем дефектов, изменяющих физико-химические свойства, в том числе реакционную способность. Накопление дефектов может быть использовано в химии для ускорения реакций с участием твердых веществ, снижения температуры процессов и других путей интенсификации химических реакций в твердой фазе.

Особенностью процесса активирования твердого вещества в результате механической обработки является то, что активирование происходит, когда размер частиц по мере измельчения достигнет некоторой критической величины. В ходе механической активации не столько увеличивается поверхность, сколько накапливаются дефекты во всем объеме кристалла. Это резко изменяет многие физико-химические свойства твердых веществ, в том числе и реакционную способность.

Повышение реакционной способности в результате механической активации можно рассматривать как один из методов получения твердых веществ в метастабильной активной форме. Поскольку химические реакции с участием твердых веществ в зависимости от особенностей их механизма по-разному чувствительны к различным дефектам, которые содержатся в кристалле, задача механической активации состоит не только в том, чтобы произвести накопление дефектов вообще, но и получить именно тот вид дефектов, который необходим для данной реакции. Эта цель может быть достигнута как подбором условий механического воздействия на кристалл (энергия воздействия, длительность, соотношение между давлением и сдвигом, температура обработки, состав окружающей атмосферы), так и учетом особенностей строения кристалла, характера химической связи, его прочностных характеристик и т.д.

Для получения наночастиц обычно вначале получают твердую дисперсию с последующим необязательным размалыванием или растиранием твердой дисперсии до получения соответствующего размера частиц. Тонкое измельчение частиц может быть осуществлено механическим способом путем приложения к частицам силы, под действием которой происходит их размельчение. Такая сила может быть обеспечена при столкновении частиц, которым придана высокая скорость, между собой. Тонкое измельчение с целью получения тонкоизмельченных частиц может быть осуществлено, например, с помощью перемалывания, с применением воздушно-струйной микронной коллоидной мельницы, с применением шаровой мельницы или с применением штифтовой мельницы. Размер получаемых наночастиц может быть определен любыми способами, общеизвестными в отрасли. Могут быть использованы, например, следующие способы: просеивание сквозь сита, седиментация, электрозонное сенсирование (с помощью счетчика Каултера), микроскопия, малоугловое лазерное светорассеяние LALLS (аббревиатура от Low-Angle Laser Light-Scattering - малоугловое лазерное светорассеяние). Предпочтительными для использования в предлагаемом изобретении являются способы измерения размеров частиц, наиболее широко используемые в фармацевтической промышленности, такие как лазерная дифракция или ситовый анализ.

Клатратный комплекс, получаемый согласно настоящему изобретению, по сравнению с ранее известным близким по структуре и применяемым в промышленности противовирусным соединением - арбидолом, обладает не только повышенной растворимостью и биодоступностью, но и повышенной активностью, что является неожиданным и неочевидным для данного клатратного комплекса.

Более подробно изобретение раскрывается в нижеуказанных примерах, которые, однако, не ограничивают притязания, а только иллюстрируют возможность его осуществления.

Нижеследующие примеры иллюстрируют предлагаемое изобретение.

1. Жидкофазный метод. Рассчитанную навеску β-циклодекстрина растворяли в 0.5 л дистиллированной воды при т-ре 65-70°C. Навеску соединения А растворяли в 0.25 л этанола при той же т-ре, что и циклодекстрин. При перемешивании и нагревании раствор гидрохлорида этилового эфира 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты приливается к раствору циклодекстрина. После смешения продолжали поддерживать температуру на уровне 65-70°C до получения истинного раствора, после чего в течение 2-х часов понижали температуру до 55°C. Спирт из раствора упаривали, а водный остаток отправляли на лиофильную сушку.

2. Твердофазный метод. Испытания проводились на шаровой планетарной мельнице Активатор 2s с материалом помольных стаканов из оксида аллюминия. Оптимальными оказался режим 400 об/мин 5 мин, 600 об/мин 10 мин, 400 об/мин 5 мин, шары 10 мм (оксид циркония) для получения комплекса соединение А: β-циклодекстрин. Мольные соотношения компонентов также варьировались от 1:1 до 1:3.

Благодаря именно этим режимам были получены комплексы с оптимальным набором спектральных данных и растворимостью. Полученный комплекс имел размер частиц менее 100 нм.

Более подробно получение клатратного комплекса (1:1) в виде наночастиц с указанным размером подтверждает анализ, проведенный на приборе Zetasizer Nano ZS (рисунок 1). Условия измерения следующие: дисперсия в воде. Плотность 1330, вязкость 0,8886 сР, температура 25°C, скорость истирания 210, средний диаметр получаемых в этом случае частиц 32.6 нм.

Аналогично были получены комплексы:

5-гидрокси-4-диметиламинометил-2-метил-1-циклогептил-3-этоксикарбонилиндол:β-циклодекстрин (мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5);

5-гидрокси-4-диэтиламинометил-2-метил-1-циклогексил-3-этоксикарбонилиндол:β-циклодекстрин (мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5);

6-хлор-5-гидрокси-4-диметиламинометил-2-этил-1-циклогексил-3-этоксикарбонилиндол:β-циклодекстрин (мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5);

6-йод-5-гидрокси-4-диметиламинометил-2-метил-1-циклогексил-3-этоксикарбонилиндол:β-циклодекстрин(мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5);

5-гидрокси-4-морфолинометил-2-метил-1-циклогексил-3-этоксикарбонилиндол или его гидрохлорид:β-циклодекстрин (мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5);

5-гидрокси-4-(N-метилпиперазино)метил-2-этил-1-циклогексил-3-этоксикарбонилиндол, его гидрохлорид или мезилат:β-циклодекстрин (мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5);

5-гидрокси-4-(N-бензилпиперазино)метил-2-метил-1-циклогексил-3-этоксикарбонилиндол и его гидрохлорид:β-циклодекстрин (мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5);

5-гидрокси-4-(N-фенилпиперазино)метил-2-метил-1-циклогексил-3-этоксикарбонилиндол, его оксалат и гидрохлорид:β-циклодекстрин (мольные соотношения от 1:1, 1:2, 1:3, 1:4, 1:5).

Образование клатратных комплексов подтверждено набором спектральных данных.

Для соединения А:

Образование комплексов подтверждалось данными УФ- и ИК-спектроскопии.

В качестве конкретного примера представлены сравнительные УФ-спектры чистого соединения А, комплексов в соотношении 1:2 и 1:3, а также чистого β-циклодекстрина. Результаты показаны на рисунках 2, 3, 4 и 5 соответственно.

Растворитель: вода

Соединение А: 0,0483 г в 25 мл растворителя ЦД: Соединение А=1:1 0,1862 г в 25 мл растворителя ЦД: Соединение А=2:1 0,3245 г в 25 мл растворителя ЦД:(циклодекстрин) 0,1750 г в 50 мл растворителя

Для снятия спектров данные растворы разбавлены в 100 раз. Навески образцов содержали одинаковое количество соединения А (0.0483 г), поэтому падение интенсивности поглощения можно отнести за счет экранирования молекулы соединения А β-циклодекстрином, т.е. образование комплекса.

Кроме того, был проведен сравнительный анализ ИК-спектров чистого Соединения А, комплексных препаратов (соотношения 1:1 и 1:2), рисунки 6-8 соответственно.

На этих спектрах отчетливо видно, что происходит перекрывание сигналов характерных групп соединения А: полос поглощения в области 2700-2900 см-1, связанной с валентными колебаниями -CH и -CH2 групп циклогексильного фрагмента, полосы поглощения в области 1750 см-1, связанной с валентными колебаниями сложноэфирной группы -COOC2H5, полос поглощения 1400-1600 см-1, соответствующих валентным колебаниям связей С-С бензольного кольца, а также полосы поглощения 1250 см-1, соответствующей фенильной -OH группе. Данный факт говорит о том, что молекула противовирусного препарата находится в полости молекулы циклодекстрина, за счет чего и происходит перекрывание сигналов и однозначно подтверждается образование клатратных комплексов.

По совокупности физико-химических характеристик оптимальным является мольное соотношение Соединение А: β-циклодекстрин 1:2.

ТАБЛЕТКИ

Клатратный комплекс 100 мг.

Соединения А и β-циклодекстрина

при мольном соотношении 1:2.

Возможные добавки: микроцеллюлоза, лактоза, стеорат кальция, крахмал.

Получают смешением компонентов в смесителе Bectochem и прессованием на таблетирующей машине Rimec.

КАПСУЛЫ

Клатратный нанокомплекс 100 мг.

Соединения А и β-циклодекстрина

при мольном соотношении 1:2.

Возможные добавки: микроцеллюлоза, лактоза, крахмал.

Получают смешением компонентов в смесителе Bectochem и заполнением желатиновых капсул 3VC.

Сравнительное изучение противовирусной активности Соединения А и комплексной формы препарата Соединение А с β-циклодекстрином при соотношении 1:2.

Противовирусную активность полученного комплекса этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты с β-циклодекстрином в виде наночастиц при соотношении 1:2 и «нативный» этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты изучали в экспериментах на модели гриппозной пневмонии мышей. Эффективность соединений оценивали по показателю защиты от смертности и средней продолжительности жизни инфицированных вирусом и леченных животных.

В предварительном опыте была определена доза вируса А/Аичи/2/69, содержащая 10 LD50.

Для этого группы, состоящие из 5-6 мышей, заражали целым аллантоисным вирусом и последовательными 10-кратными его разведениями. Данные по наблюдению за животными в течение 15 дней представлены в таблице 1. Исследования по противовирусной активности противовируса in vivo проведены в Центре химии лекарственных средств (ЦХЛС-ВНИХФИ). Результаты исследований приведены в таблицах 1 и 2.

Таблица 1 Определение LD 50 на модели гриппозной пневмонии мышей введения Вируса Количество мышей в группе Выжившие/погибшие Смертность, % Цельный вирус 4 0/4 100 10-1 5 0/5 100 10-2 5 0/5 100 10-3 5 3/6 50 10-4 6 6/0 0 10-5 5 5/0 0

Из представленных данных видно, что 50% гибель животных вызывает заражение вирусом 10-3. Все животные в опыте были заражены дозой вируса с множественностью 10 LD50.

Таблица 2 Изучение эффективности нативной формы противовирусного средстве и его клатратного комплекса с циклодекстрином на модели гриппозной инфекции у мышей Препарат 1 опыт 2 опыт Выживаемость Показатель защиты от смертности %) Средняя продолжительность жизни (дни) Выживаемость Показатель защиты от смертности (%) Средняя продолжительность жизни (ДНИ)∗∗ жив/общее % смертности жив/ общее % смертности Нативная форма 30 мг/кг/день 5/10 50 40 10,6 (1-5 д., 3-6 д., 1-13 д.) 4/10 60 40 9,4 (2-5 д., 3-7 д., 1-9 д.) 60 мг/кг/день 5/10 50 40 10,3 (1-5 д, 1-6 д., 2-7 д., 1-8 д.) 3/10 70 30 9,5 (1-5 д., 5-7 д, 2-9 д.) Клатратная форма с циклодекстрином 30 мг/кг/день 7/10 30 60 13,4 (1-10 д., 2-11 д.) 7/10 30 70 14,1 (1-11 д., 2-10 д.) 60 мг/кг/день 6/10 40 50 12,6 1-3 д., 1-6 д, 2-8 д.) 6/10 40 60 13,2 (2-10 д., 4-7 д., 1-9 д.)

Продолжение таблицы 2 Вирусный контроль 1/10 10 90 6,2 (4-5 д, 2-6 д., 1-7 д., 1-8 д., д., 1-9 д.) 0/10 100 5,7 (3-5 д., 4-7д., 3-8д.) Схема лечения: за 24 и 1 часа до заражения, далее через 8, 24, 48, 72 и 96 часов после заражения ∗∗Среднюю продолжительность жизни определяли по формуле Σf(d-1)/n, где f - количество мышей, умерших на день d (выжившие мыши включены в f и d в этом случае равно 16), n - количество мышей в группе.

Данные, приведенные в таблице 2, свидетельствуют о том, что препарат этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты в виде клатратного комплекса с β-циклодекстрином при соотношении 1:2, применявшийся в дозах 30 и 60 мг/кг/день, по противовирусной активности превосходил нативный этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты, о чем свидетельствуют показатели защиты от смертности 50-70 и 30-40% соответственно.

Похожие патенты RU2464042C1

название год авторы номер документа
КЛАТРАТНЫЕ КОМПЛЕКСЫ БЕТА-ЦИКЛОДЕКСТРИНА С 1-{[6-БРОМ-1-МЕТИЛ-5-МЕТОКСИ-2-ФЕНИЛТИОМЕТИЛ-1-Н-ИНДОЛ-3-ИЛ]КАРБОНИЛ}-4-БЕНЗИЛПИПЕРАЗИНОМ, ОБЛАДАЮЩИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ, ИХ ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ 2010
  • Воробьёв Илья Владимирович
  • Хомиченок Виктор Владимирович
  • Подгородниченко Владимир Константинович
  • Цыб Анатолий Фёдорович
  • Розиев Рахимджан Ахметджанович
  • Гончарова Анна Яковлевна
RU2448120C1
ПРОИЗВОДНЫЕ 5-ГИДРОКСИ-4-АМИНОМЕТИЛ-1-ЦИКЛОГЕКСИЛ (ИЛИ ЦИКЛОГЕПТИЛ)-3-АЛКОКСИКАРБОНИЛИНДОЛОВ, ИХ ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫЕ СОЛИ, ОБЛАДАЮЩИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ, И СПОСОБ ИХ ПОЛУЧЕНИЯ 2008
  • Верховский Юрий Григорьевич
  • Цышкова Нина Гавриловна
  • Трофимов Федор Александрович
  • Розиев Рахимджан Ахметджанович
  • Цыб Анатолий Федорович
  • Гончарова Анна Яковлевна
  • Подгородниченко Владимир Константинович
RU2386616C2
ПРОИЗВОДНЫЕ 4-АМИНОМЕТИЛ-6-БРОМ-5-ГИДРОКСИИНДОЛ-3-КАРБОКСИЛАТОВ, СПОСОБЫ ИХ ПОЛУЧЕНИЯ (ВАРИАНТЫ) И ПРИМЕНЕНИЕ 2006
  • Верховский Юрий Григорьевич
  • Трофимов Фёдор Александрович
  • Цышкова Нина Гавриловна
  • Шевченко Елена Сергеевна
  • Бурцева Елена Ивановна
  • Цыб Анатолий Фёдорович
  • Розиев Рахимджан Ахметджанович
RU2330018C2
КЛАТРАТНЫЙ КОМПЛЕКС ЦИКЛОДЕКСТРИНА ИЛИ АРАБИНОГАЛАКТАНА С 9-ФЕНИЛ-СИММ-ОКТАГИДРОСЕЛЕНОКСАНТЕНОМ, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И ЛЕКАРСТВЕННОЕ СРЕДСТВО 2011
  • Подгородниченко Владимир Константинович
  • Цыб Анатолий Фёдорович
  • Розиев Рахимджан Ахметджанович
  • Гончарова Анна Яковлевна
  • Воробьёв Илья Владимирович
  • Еримбетов Кенес Тагаевич
RU2451680C1
КЛАТРАТНЫЙ КОМПЛЕКС АРАБИНОГАЛАКТАНА ИЛИ ГУММИАРАБИКА С 20-ГИДРОКСИЭКДИЗОНОМ, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И ЛЕКАРСТВЕННОЕ СРЕДСТВО 2013
  • Розиев Рахимджан Ахметджанович
  • Гончарова Анна Яковлевна
  • Еримбетов Кенес Тагаевич
  • Подгородниченко Владимир Константинович
RU2572334C2
Фармацевтическая композиция и лекарственное средство на основе клатратного комплекса N-карбамоилметил-4-фенил-2-пирролидон или 4-фенилпирацетам с циклодекстрином, способы его получения (варианты) 2016
  • Исмагилов Искандар Халиуллович
RU2640081C1
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И ЛЕКАРСТВЕННОЕ СРЕДСТВО НА ОСНОВЕ КЛАТРАТНОГО КОМПЛЕКСА 7-БРОМ-5-(ОРТО-ХЛОРФЕНИЛ)-2,3-ДИГИДРО-1Н-1,4-БЕНЗОДИАЗЕПИН-2-ОНА С ЦИКЛОДЕКСТРИНОМ, СПОСОБЫ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2014
  • Исмагилов Искандар Халиуллович
RU2570382C1
ОЧИЩЕННЫЕ ПРОИЗВОДНЫЕ СУЛЬФОАЛКИЛЬНЫХ ЭФИРОВ ЦИКЛОДЕКСТРИНА ИЛИ ИХ СМЕСЬ, КЛАТРАТНЫЙ КОМПЛЕКС ПРОИЗВОДНЫХ ЦИКЛОДЕКСТРИНА С ЛЕКАРСТВЕННЫМ ВЕЩЕСТВОМ И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ 1993
  • Валентино Ж.Стелла
  • Роджер Раевски
RU2113442C1
ИНГИБИРУЮЩИЕ ВИЧ ПРОИЗВОДНЫЕ 2-(4-ЦИАНОФЕНИЛАМИНО)-ПИРИМИДИН-ОКСИДА 2006
  • Де Кок Херман Аугустинус
  • Вигеринк Пит Том Берт Поль
RU2398768C2
1,5,6-ЗАМЕЩЕННЫЕ 2-ОКСО-3-ЦИАНО-1,6А-ДИАЗАТЕТРАГИДРОФЛУОРАНТЕНЫ 2006
  • Кестелейн Барт Рудольф Романи
  • Рабуассон Пьер Жан-Мари
  • Ван Де Фрейкен Вим
  • Канар Максим Франсис Жан-Мари Гилэйн
RU2389730C2

Иллюстрации к изобретению RU 2 464 042 C1

Реферат патента 2012 года КЛАТРАТНЫЙ КОМПЛЕКС β-ЦИКЛОДЕКСТРИНА С ПРОИЗВОДНЫМ 5-ГИДРОКСИ-4-АМИНОМЕТИЛ-1-ЦИКЛОГЕКСИЛ(ИЛИ ЦИКЛОГЕПТИЛ)-3-АЛКОКСИКАРБОНИЛИНДОЛА, СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И ЛЕКАРСТВЕННОЕ СРЕДСТВО

Изобретение относится к новому клатратному комплексу (соединению включения) β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола: β-циклодекстрин от 1:1 до 1:5, предпочтительно, при соотношения от 1:1 до 1:3. общей формулы (I): где Х означает - водород, хлор, йод, n=1 или 2, R3-C1-C3 алкил, ALK означает C1-C6 алкильную группу, R1, R2 независимо выбираются из C1-C4-алкила, преимущественно метила, или R1 и R2 вместе с атомом азота (т.е. группа -NR1R2) означает группы, соответствующие формулам:

в которых Bn - бензил, a Ph - фенил, при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола:β-циклодекстрин от 1:1 до 1:5, преимущественно от 1:1 до 1:3, особенно предпочтительно, при соотношении 1:2. Клатратный комплекс может представлять собой наночастицы с размером менее 100 нм. Предпочтительны клатратные комплексы, в которых производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола представляет собой этиловый эфир 1- циклогсксил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты. Новые клатратные комплексы обладают противовирусным действием и проявляют высокую активность против вирусов гриппа. Изобретение также включает фармацевтическую композицию и лекарственное средство на основе клатратных комплексов. Кроме того, изобретение относится к жидкофазному и твердофазному синтезу клатратных комплексов. 5 н. и 15 з.п. ф-лы, 2 пр., 2 табл., 8 ил.

Формула изобретения RU 2 464 042 C1

1. Клатратный комплекс β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола общей формулы (I):

где Х - означает водород, хлор, йод, n=1 или 2,
R3-C1-C3 алкил,
ALK - означает C1-C6 алкильную группу,
R1, R2 независимо выбираются из C1-C4-алкила, преимущественно метила, или R1 и R2 вместе с атомом азота (т.е. группа -NR1R2) означает группы, соответствующие формулам:
,
в которых Bn - бензил, a Ph - фенил, при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола: β-циклодекстрин от 1:1 до 1:5.

2. Клатратный комплекс по п.1, в котором мольное соотношение β-циклодекстрина и производного 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола находится в пределах от 1:1 до 1:3, предпочтительно при соотношении 1:2.

3. Клатратный комплекс по п.1 или 2, согласно которому он представляет собой наночастицы с размером менее 100 нм.

4. Клатратный комплекс по п.1, в котором производное 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола представляет собой этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1H-индол-3-карбоновой кислоты.

5. Клатратный комплекс по п.1, обладающий противовирусным действием.

6. Клатратный комплекс по п.5, обладающий активностью против вирусов гриппа А.

7. Жидкофазный способ получения клатратного комплекса по п.1, который заключается в том, что смешивают водный раствор β-циклодекстрина и спиртовой соответствующего производного производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) или его фармацевтически приемлемой соли, при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола или его фармацевтически приемлемая соль: β-циклодекстрин в пределах от 1:1 до 1:5 при перемешивании и нагревании до температуры не выше 75°C, затем выдерживают при перемешивании при указанной температуре до получения однородного раствора с последующим выделением полученного клатратного комплекса.

8. Способ по п.7, отличающийся тем, что используют мольное соотношение производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола: β-циклодекстрин в пределах от 1:1 до 1:3, предпочтительно 1:2.

9. Способ по п.7, согласно которому в качестве производного 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) используют этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1H-индол-3-карбоновой кислоты.

10. Твердофазный способ получения клатратного комплекса по п.1, отличающийся тем, что β-циклодекстрин и соответствующее производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) или его фармацевтически приемлемую соль подвергают перемалыванию на шаровой мельнице со скоростью от 400 об/мин до 800 об/мин в течение времени от 10 до 60 мин при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола или его фармацевтически приемлемая соль: β-циклодекстрин от 1:1 до 1:5 при температуре от 30 до 60°C, с получением клатратного комплекса, который при необходимости дополнительно перемалывают для получения продукта в виде наночастиц с размером менее 100 нм.

11. Способ по п.10, отличающийся тем, что производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола: β-циклодекстрин используют при мольном соотношении в пределах от 1:1 до 1:3, особенно при соотношениях 1:2.

12. Способ по п.10, согласно которому в качестве производного 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) используют этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты.

13. Способ п.10, согласно которому получают клатратный комплекс в виде наночастиц с размером менее 100 нм.

14. Фармацевтическая композиция, обладающая противовирусным действием, которая содержит в эффективном количестве клатратный комплекс β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола:β-циклодекстрин от 1:1 до 1:5 по п.1 и фармацевтически приемлемый наполнитель.

15. Фармацевтическая композиция по п.14, обладающая активностью против вируса гриппа А, или вируса гриппа В, или гриппозной пневмонии, которая содержит клатратный комплекс β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола:β-циклодекстрин от 1:1 до 1:5 по п.1 в эффективном количестве и фармацевтически приемлемый наполнитель.

16. Фармацевтическая композиция по п.14, которая содержит клатратный комплекс β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндол: β-циклодекстрин в пределах от 1:1 до 1:3, особенно при соотношениях 1:2.

17. Фармацевтическим композиция по п.14, которая содержит клатратный комплекс β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) по п.1 в виде наночастиц с размером менее 100 нм.

18. Фармацевтическим композиция по п.14, которая содержит в клатратном комплексе этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1H-индол-3-карбоновой кислоты в качестве производного 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола.

19. Лекарственное средство в виде капсул, таблеток или инъекций в фармацевтически приемлемой упаковке, которое содержит клатратный комплекс β-циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола общей формулы (I) при мольном соотношении производное 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола общей формулы (I): β-циклодекстрин в пределах от 1:1 до 1:5, предпочтительно, при соотношения от 1:1 до 1:3, по п.1, или фармацевтическую композицию на его основе по п.14, в эффективном количестве.

20. Лекарственное средство по п.19, отличающееся тем, что содержит клатратный комплекс β-циклодекстрина и этиловый эфир 1-циклогексил-4-аминометил-5-гидрокси-2-метил-1Н-индол-3-карбоновой кислоты в качестве производного 5-гидрокси-4-аминометил-1-циклогексил (или циклогептил)-3-алкоксикарбонилиндола.

Документы, цитированные в отчете о поиске Патент 2012 года RU2464042C1

ПРОИЗВОДНЫЕ 5-ГИДРОКСИ-4-АМИНОМЕТИЛ-1-ЦИКЛОГЕКСИЛ (ИЛИ ЦИКЛОГЕПТИЛ)-3-АЛКОКСИКАРБОНИЛИНДОЛОВ, ИХ ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫЕ СОЛИ, ОБЛАДАЮЩИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ, И СПОСОБ ИХ ПОЛУЧЕНИЯ 2008
  • Верховский Юрий Григорьевич
  • Цышкова Нина Гавриловна
  • Трофимов Федор Александрович
  • Розиев Рахимджан Ахметджанович
  • Цыб Анатолий Федорович
  • Гончарова Анна Яковлевна
  • Подгородниченко Владимир Константинович
RU2386616C2
US 20050209189 A1, 22.09.2005
US 4956351 A, 11.09.1990
US 20100204179 A1, 12.08.2010
DE 19814815 A1, 07.10.1999
US 5221669 A, 22.06.1993
US 20070185054 A, 09.08.2007
6,7,8,9-ЗАМЕЩЕННЫЕ 1-ФЕНИЛ-1,5-ДИГИДРОПИРИДО (3,2-b) ИНДОЛ-2-ОНЫ, ПОЛЕЗНЫЕ В КАЧЕСТВЕ АНТИИНФЕКЦИОННЫХ ФАРМАЦЕВТИЧЕСКИХ СРЕДСТВ 2005
  • Кестелейн Барт Рудольф Романи
  • Вендевилль Сандрин Мари Элен
  • Киндерманс Натали Мария Франциска
  • Сюрлеро Доминик Луи Нестор Гилэйн
  • Рабуассон Пьер Жан-Мари Бернар
  • Вигеринк Пит Том Берт Поль
  • Петерс Анник Анн
RU2377243C2
КРИСТАЛЛИЧЕСКИЕ ФОРМЫ ПРОИЗВОДНОЙ ИМИДАЗОЛА 2006
  • Харута Наоаки
  • Като Томоки
  • Ли Чжэн Джейн
  • Нумата Тойохару
  • Траск Эндрю Винсент
RU2357968C1

RU 2 464 042 C1

Авторы

Воробьёв Илья Владимирович

Хомиченок Виктор Владимирович

Подгородниченко Владимир Константинович

Цыб Анатолий Фёдорович

Розиев Рахимджан Ахметджанович

Гончарова Анна Яковлевна

Даты

2012-10-20Публикация

2011-03-31Подача