Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия.
Известен способ получения катализатора путем ионного обмена, при котором носитель из огнеупорного оксида, содержащего катион водорода, обрабатывают раствором, содержащим катионы металлов. Непосредственно после обработки оксид промывают водой для отделения химически несвязанных металлических катионов. Далее оксид сушат, при этом часть металлических катионов восстанавливается при нагревании огнеупорного оксида до элементарного металла путем отделения от связанной воды, которая ассоциирована с металлическими катионами (пат. Германии №1542012, кл. B01Y 37/30, от 21.10.76 г.). Этот катализатор используется только для ионного обмена.
Известен способ получения катализатора для изотопного обмена между водой и водородом, где катализатор включает гидрофобную пористую матрицу с диспергированной в ней платиной и, по крайней мере, другой металл, выбранный из группы хрома или титана (пат. ЕР №1486457 Кл. B01D 59/00, B01Y 37/00-37/02, от 06.06.2003 г.). Однако этот катализатор используется только для изотопного обмена между водой и водородом.
Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора Ptмиц/Al2O3 для изотопного обмена протия и дейтерия и о-п конверсии протия. Наночастицы Pt образуются при радиационно-химическом восстановлении ионов платины в обратномицелярных системах Н2[РtСl6]/Н2O/ацетон/бис(2-этилгексил)сульфосукцинат натрия/изооктан. Наночастицы получены из трех различных исходных обратномицеллярных растворов, отличающихся значениями коэффициента солюбилизации ω=1,5, 3 и 5 («Перспективные материалы», стр.288-293, 2010 г.).
Однако катализатор обладает невысокой каталитической активностью.
Техническим результатом изобретения является получение катализатора для изотопного обмена протия-дейтерия, обладающего высокой каталитической активностью и предназначенного для работы в интервале температур 77÷400 К.
Этот технический результат достигается получением катализатора для изотопного обмена протия-дейтерия, включающего получение наночастиц металла в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, причем восстановление соли металла происходит при взаимодействии с кверцетином, в качестве носителя используют SiO2, а в качестве соли металла используют RhCl3 или RuOHCl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовый раствор в количестве 5-50 масс.%, раствор кверцетина в количестве 0,5-5 масс.% и аммиачный раствор в количестве 10-30 масс.%.
В качестве спирта в водно-спиртовом растворе используют изопропанол.
Пример №1
Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 масс.%), раствор кверцетина 3,4·10-4 г (0,5 масс.%) и аммиачный раствор в количестве 2,0·10-2 г (30 масс.%).
Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.
По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем SiO2, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/SiO2 по отношению к реакции изотопного обмена протия-дейтерия 4,94·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа. Данные по активности данного образца катализатора Rh/SiO2, приготовленного по примеру 1, в интервале температур 77÷400 К представлены в таблице 1.
Пример №2
Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 масс.%), раствор кверцетина 3,4·10-3 г (5 масс.%) и аммиачный раствор в количестве 6,8·10-3 г (10 масс.%).
Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.
По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем SiO, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/SiO2 пo отношению к реакции изотопного обмена протия-дейтерия составила 4,38·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.
Данные по активности данного образца катализатора Rh/SiO2, приготовленного по примеру 2, в интервале температур 77-400 К представлены в таблице 2.
Пример №3
Готовился обратномицеллярный раствор соли рутения RuOHCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 масс.%), раствор кверцетина 3,4·10-4 г (0,5 масс.%) и аммиачный раствор в количестве 2,0·10-2 г (30 масс.%).
Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.
По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем SiO2, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/SiO2 по отношению к реакции изотопного обмена протия-дейтерия составила 4,35·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.
Данные по активности данного образца катализатора Ru/SiO2, приготовленного по примеру 3, в интервале температур 77-400 К представлены в таблице 3.
Пример №4
Готовился обратномицеллярный раствор соли рутения RuOHCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 масс.%), раствор кверцетина 3,4·10-3 г (5 масс.%) и аммиачный раствор в количестве 6,8·10-3 г (10 масс.%).
Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.
По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем SiO2, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/SiO2 по отношению к реакции изотопного обмена протия-дейтерия составила 4,47·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.
Результаты измерений удельной каталитической активности образца катализатора Ru/SiO2, приготовленного по примеру 4, в интервале температур 77-400 К представлены в таблице 4.
Представленные данные показывают отсутствие значимых различий в величинах каталитической активности при отношении мольного количества водно-спиртового раствора соли родия или рутения с добавлением аммиака к мольному количеству ПАВ в диапазоне от 1:1 до 10:1.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ | 2011 |
|
RU2464093C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ | 2011 |
|
RU2477175C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ | 2011 |
|
RU2464090C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ | 2011 |
|
RU2464091C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ - ДЕЙТЕРИЯ | 2011 |
|
RU2464094C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ | 2011 |
|
RU2481891C2 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ | 2011 |
|
RU2481155C2 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ | 2011 |
|
RU2490061C2 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ | 2011 |
|
RU2464095C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ | 2011 |
|
RU2461425C1 |
Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. Описан способ получения катализатора для изотопного обмена протия-дейтерия, включающий получение наночастиц металла в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, причем восстановление соли металла происходит при взаимодействии с кверцетином, в качестве носителя используют SiO2, а в качестве соли металла используют RhСl3 или RuОНСl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовый раствор в количестве 5-50 масс.%, раствор кверцетина в количестве 0,5-5 масс.% и аммиачный раствор в количестве 10-30 масс.%. Технический результат - получен катализатор для изотопного обмена протия-дейтерия, обладающий высокой каталитической активностью. 1 з.п. ф-лы; 4 табл.; 4 пр.
1. Способ получения катализатора для изотопного обмена протия-дейтерия, включающий получение наночастиц металла в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, отличающийся тем, что восстановление соли металла происходит при взаимодействии с кверцетином, в качестве носителя используют SiO2, а в качестве соли металла используют RhСl3 или RuOHCl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовый раствор в количестве 5-50 мас.%, раствор кверцетина в количестве 0,5-5 мас.% и аммиачный раствор в количестве 10-30 мас.%.
2. Способ получения катализатора для изотопного обмена протия-дейтерия по п.1, отличающийся тем, что в качестве спирта в водно-спиртовом растворе используется изопропанол.
Перспективные материалы | |||
Спец | |||
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
Наночастицы платины в качестве катализатора изотопного обмена в молекулярном водороде | |||
Боева О.А | |||
и др., с.288-293, февраль 2010 | |||
СПОСОБ ПРИГОТОВЛЕНИЯ ПЛАТИНОВОГО ГИДРОФОБНОГО КАТАЛИЗАТОРА ИЗОТОПНОГО ОБМЕНА ВОДОРОДА С ВОДОЙ | 2006 |
|
RU2307708C1 |
US 2005181938 A1, 18.08.2005 | |||
JP 57105242 A, 30.03.1982 | |||
US 4025560 A, 24.05.1977 | |||
Установка для перестановки стеклоизделий | 1961 |
|
SU141596A1 |
Авторы
Даты
2012-10-20—Публикация
2011-07-14—Подача