СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА Российский патент 2012 года по МПК C23C14/06 C23C14/24 B23B27/14 

Описание патента на изобретение RU2464342C1

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана (TiN) или карбонитрида титана (TiCN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998. 123 с.).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе наносимое покрытие не обеспечивает такой же высокой эффективности при работе режущего инструмента с этим покрытием в условиях прерывистого резания, в частности при фрезеровании, как при непрерывном резании.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, раскрытый в описании к патенту на изобретение RU 2278905 С1, принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточной твердостью, а следовательно, трещиностойкостью. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. Наличие в покрытии верхнего слоя, обладающего высокой твердостью, способствует снижению интенсивности износа РИ с многослойным покрытием. Для повышения прочности сцепления покрытия с инструментальной основой оно должно иметь в своем составе нижний слой с повышенными адгезионными свойствами. Кроме того, увеличение твердости нижнего слоя покрытия также способствует дополнительному снижению интенсивности износа РИ с многослойным покрытием. Повышение прочности сцепления слоев обеспечивается за счет нанесения промежуточного слоя из элементов верхнего и нижнего слоев. Этот слой обладает высоким химическим сродством с другими слоями, высокой твердостью. Промежуточный слой также способствует повышению трещиностойкости за счет появления дополнительных границ между слоями.

Технический результат - повышение работоспособности РИ.

Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида или карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 93,15-95,35, цирконий 4,0-6,0, кремний 0,65-0,85; промежуточный - из нитрида или карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 83,15-87,35, цирконий 12,0-16,0, кремний 0,65-0,85; верхний - из нитрида или карбонитрида соединения титана и циркония при их соотношении, мас.%: титан 89,0-92,0, цирконий 8,0-11,0, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и циркония и располагают противоположно друг другу, а третий изготавливают из сплава титана и кремния и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, промежуточный слой - с использованием второго и третьего катодов, верхний слой - с использованием первого и второго катодов.

Такая структура покрытия позволяет получить высокую прочность сцепления с основой из-за наличия в покрытии нижнего слоя, обладающего высокой адгезией с инструментальной основой. При этом слои обладают высокой твердостью из-за дополнительного легирования материала слоев покрытий и наличия в их структуре микрослоистости, получаемой при нанесении покрытий по предлагаемой схеме расположения катодов.

Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. Кроме того, из-за недостаточной прочности сцепления с инструментальной основой и слоев внутри многослойного покрытия возможно разрушение последнего в результате адгезионно-усталостных явлений на контактных площадках. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин. Нижний слой покрытия должен обладать высокой адгезией с инструментальным материалом. Слои покрытия должны обладать высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.

Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип с соотношением слоев, соответствующим оптимальному значению, указанному в известном способе, а также двухслойное покрытие по предлагаемому способу.

Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. Используются расположенные противоположно друг другу первый и второй составные катоды из титана и циркония и третий катод из сплава титана и кремния, расположенный между ними. Камеру откачивают до давления 6,65·10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают один катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа - азота (или смеси азота и ацетилена) включают первый (из титана и циркония) и третий (из титана и кремния) катоды и осаждают нижний слой покрытия TiZrSiN (или TiZrSiCN) толщиной 2,0 мкм. Промежуточный слой покрытия TiZrSiN (или TiZrSiCN) толщиной 2,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А и включенных втором (из титана и циркония) и третьем (из титана и кремния) катодах и подаче реакционного газа - азота (или смеси азота и ацетилена). Верхний слой покрытия TiZrN (или TiZrCN) толщиной 2,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А, включенных первом (из титана и циркония) и втором (из титана и циркония) катодах и подаче реакционного газа - азота (или смеси азота и ацетилена). Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Микротвердость покрытий определяли на микротвердомере «ПМТ-3» под нагрузкой 100 г.

Стойкостные испытания режущего инструмента проводили при симметричном торцовом фрезеровании заготовок из стали 5ХНМ на станке 6Р12. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Режимы резания были следующими: скорость резания V=247 м/мин, подача S=0,4 мм/зуб, глубина резания t=1,5 мм, ширина фрезерования В=20 мм. За критерий износа была принята величина фаски износа по задней поверхности hз=0,4 мм.

В табл.1 приведены результаты испытаний РИ с полученными покрытиями.

Таблица 1 Результаты испытаний РИ с покрытием Материал покрытия Химический состав слоев покрытия (соотношение металлических компонентов), % мае. Микротвер
дость, ГПа
Стойкость, мин Примеча
ние
1 слой 2 слой 3 слой Ti Si Zr Ti Si Zr Ti Zr TiN - 29,2 45 Аналог TiZrCr-TiZrCrN-TiZrN 85 10* 5 76 10* 14 90,5 9,5 37,8 248 Прототип TiZrSiN-TiZrSiN-TiZrN 95,25 0,75 4 87,25 0,75 12 92 8 38,6 282 94,35 0,65 5 85,35 0,65 14 90,5 9,5 39,1 290 94,25 0,75 5 85,25 0,75 14 90,5 9,5 39,2 297 94,15 0,85 5 85,15 0,85 14 90,5 9,5 39,0 292 93,25 0,75 6 83,25 0,75 16 89 11 38,7 280 TiZrSiCN-TiZrSiCN-TiZrCN 95,25 0,75 4 87,25 0,75 12 92 8 44,2 321 94,35 0,65 5 85,35 0,65 14 90,5 9,5 44,6 332 94,25 0,75 5 85,25 0,75 14 90,5 9,5 45,3 343 94,15 0,85 5 85,15 0,85 14 90,5 9,5 44,6 335 93,25 0,75 6 83,25 0,75 16 89 11 43,9 324 * - указано содержание хрома во втором (промежуточном) и верхнем (третьем) слоях покрытия

Как видно из приведенных в таблице 1 данных, стойкость пластин с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу, в 1,14-1,38 раза.

Похожие патенты RU2464342C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2010
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
RU2424375C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2012
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Романов Александр Александрович
  • Горностаев Дмитрий Васильевич
RU2495151C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2014
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Полозов Михаил Вячеславович
RU2585564C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622531C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622541C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сизов Сергей Валерьевич
RU2596524C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2016
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
RU2637865C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2011
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Смирнов Максим Юрьевич
  • Романов Александр Александрович
RU2461644C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2010
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Осипов Максим Анатольевич
RU2419679C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2012
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Романов Александр Александрович
  • Горностаев Дмитрий Васильевич
RU2495960C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Наносят нижний слой из нитрида или карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 93,15-95,35, цирконий 4,0-6,0, кремний 0,65-0,85. Затем наносят промежуточный слой из нитрида или карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 83,15-87,35, цирконий 12,0-16,0, кремний 0,65-0,85 и верхний - из нитрида или карбонитрида соединения титана и циркония при их соотношении, мас.%: титан 89,0-92,0, цирконий 8,0-11,0. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и циркония и располагают противоположно друг другу, а третий изготавливают из сплава титана и кремния и располагают между ними. Нижний слой наносят с использованием первого и третьего катодов, промежуточный слой - с использованием второго и третьего катодов, верхний слой - с использованием первого и второго катодов. Повышается работоспособность режущего инструмента. 1 табл.

Формула изобретения RU 2 464 342 C1

Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида или карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 93,15-95,35, цирконий 4,0-6,0, кремний 0,65-0,85, промежуточный - из нитрида или карбонитрида соединения титана, циркония и кремния при их соотношении, мас.%: титан 83,15-87,35, цирконий 12,0-16,0, кремний 0,65-0,85, верхний - из нитрида или карбонитрида соединения титана и циркония при их соотношении, мас.%: титан 89,0-92,0, цирконий 8,0-11,0, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и циркония и располагают противоположно друг другу, а третий изготавливают из сплава титана и кремния и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, промежуточный слой - с использованием второго и третьего катодов, верхний слой - с использованием первого и второго катодов.

Документы, цитированные в отчете о поиске Патент 2012 года RU2464342C1

СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2004
  • Табаков Владимир Петрович
  • Ширманов Николай Анатольевич
  • Циркин Алексей Валерьевич
  • Чихранов Алексей Валерьевич
  • Порохин Сергей Сергеевич
RU2278905C2
Способ получения линалилацетата 1952
  • Кенин С.Л.
  • Кудряшева Н.В.
  • Шумейко А.К.
SU97082A1
Способ и устройство для вязания на круглочулночных автоматах изделий с закрытым мыском, начиная с мыска 1951
  • Волянский Т.И.
  • Смирнов Л.С.
SU93399A1
ТВЕРДОТЕЛЬНЫЙ ВОЛНОВОЙ ГИРОСКОП 2000
  • Мачехин П.К.
  • Кузьмин С.В.
RU2168702C1
Система автоматизации исследований 1980
  • Григорьев Глеб Николаевич
  • Домарацкий Сергей Николаевич
  • Зудин Олег Сергеевич
  • Котик Игорь Павлович
  • Куклин Герман Николаевич
  • Лиснянский Борис Лазаревич
  • Новиков Александр Александрович
  • Попенко Николай Васильевич
  • Ситников Леонид Семенович
  • Шадрин Александр Борисович
  • Ааринен Рейно
  • Вайнио Олли
  • Кауппинен Сакари
  • Лааксонен Осмо
  • Линдфорс Илпо
  • Тюрвяйнен Марьятта
SU900287A1

RU 2 464 342 C1

Авторы

Табаков Владимир Петрович

Чихранов Алексей Валерьевич

Власов Станислав Николаевич

Смирнов Максим Юрьевич

Романов Александр Александрович

Даты

2012-10-20Публикация

2011-05-17Подача