ОГНЕСТОЙКИЙ ПОЛИМЕРНЫЙ КОМПОЗИТ ДЛЯ ПАНЕЛЕЙ Российский патент 2012 года по МПК C08L23/02 C08K3/22 B82B1/00 E04C2/00 C08J5/00 

Описание патента на изобретение RU2465290C1

Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов.

Известна огнестойкая полиолефиновая композиция (RU 2114134 С1, C08L 23/02, С08К 3/04, С08К 3/22, 27.06.1998), имеющая низкие дымообразование и токсичность, содержащая полиолефин, в качестве которого она содержит полиолефин, который является по крайней мере одним представителем, выбранным из группы, состоящей из полиэтилена, полипропилена, сополимера этилена с этилакрилатом и сополимера этилена с винилацетатом, и в качестве антипиренового компонента сложный гидроксид металла общей формулы Mgl-xMx(OH)2, где М - по крайней мере один двухвалентный металл, выбранный из группы, состоящей из марганца, железа, кобальта, никеля, меди и цинка, и тонкодисперсный углеродный порошок, причем на 100 мас.ч. полиолефиновой смолы приходится 80-130 мас.ч. сложного гидроксида металла и углеродного порошка.

Материал, изготовленный на основе данной композиции, предназначенный для использования в качестве материала для оболочки электрических проводов и кабелей или в качестве материала для различных электрических элементов, нецелесообразно использовать в качестве огнестойкого сердечника для строительных панелей вследствие его достаточно высокой стоимости.

Наиболее близким по технической сущности (техническому назначению) к заявляемому решению является огнестойкий полимерный композит, используемый в панелях, описанных в заявке (RU 2008149670 А, Е04С 2/00, 27.06.2010), представляющий собой гомогенную композицию из полиэтилена, наполненного полыми микросферами золы-уноса, полученными от сжигания углей, внутренние полости микросфер заполнены антипиреном.

Данный композит обладает достаточно высокой огнестойкостью, но при этом производство таких панелей связано со значительными затратами, в частности на выделение из золы-уноса фракции полых микросфер, что существенно сказывается и на стоимости панели.

Задачей настоящего изобретения является снижение стоимости производства огнестойкого полимерного композита для панелей, и, как следствие, снижение стоимости производства строительных панелей, в которых заявляемый огнестойкий полимерный композит может использоваться в качестве материала для изготовления сердечника, с сохранением при этом высокой огнестойкости.

Настоящая задача решается тем, что огнестойкий полимерный композит для панелей на основе полиолефина согласно заявляемому изобретению представляет собой нанокомпозит, имеющий слоистую структуру, образованную прослойками полимера нанометровой толщины, сформированными между слоями модифицированного антипиренами бентонита, в состав которого входит не менее 70-72% монтмориллонита (ММТ), с содержанием последнего в композите 5-15 об.%, при этом бентонит для получения нанокомпозита используют в виде глинопорошка, а содержание антипиренов в бентоните составляет 3-10 мас.%

Огнестойкий полимерный композит для панелей содержит полиолефин, который может быть представлен полиэтиленом или полипропиленом.

Технический результат, достигаемый при реализации заявленного изобретения и заключающийся в снижении стоимости огнестойкого полимерного композита для панелей, и соответственно, снижении цены металлических композитных панелей, применяемых при монтаже навесных вентилируемых фасадов, достигается за счет того, что входящие в состав композита слоистые силикаты, представляющие собой природные материалы с толщиной слоев около 1 нм, длина и ширина которых варьируется от 30 нм до нескольких микрон, имеют широкое распространение и большие объемы залежей, вследствие чего исходный материал, используемый в составе композита, является достаточно легкодоступным и сравнительно недорогим.

Монтмориллонит - основной глинистый минерал бентонитовой глины представляет собой слоистый водный алюмосиликат. В природе чаще встречаются бентонитовые глины с содержанием монтмориллонита 30-60%, такие глины не обладают достаточной слоистостью, эластичностью и термостойкостью. При содержании в глине монтмориллонита выше 70% повышается дисперсность глин, их высокая связующая способность и пластичность, увеличивается огнеупорность бентонитов.

При этом огнестойкость полимера и его низкая горючесть обусловлены тем, что при горении в результате окислительной карбонизации формируются углерод-силикатные слои в структуре полимера, которые изолируют полимер от источника тепла с образованием барьера, препятствующего распространению летучих продуктов разложения полимера в зону горения.

При получении огнестойкого полимерного композита для панелей использовались бентонитовые глины производства ОАО «Хакасский бентонит» с содержанием в них монтмориллонита (ММТ) 70-72%. Глины имеют следующий химический состав, мас.%:

SiO2 - 60.5

TiO2 - 0.11

Al2O3 - 16.25

Fe2O3 - 1.70

FeO - 0.75

MgO - 2.38

MnO - 0.03

CaO - 1.75

Na2O - 0.77

K2O - 1.01

Для получения огнестойкого полимерного композита для панелей был выбран метод интеркалирования в расплаве, смешивания расплавленного полиолефина с минералом из подкласса слоистых силикатов.

Опытные образцы огнестойкого полимерного композита для панелей изготавливали следующим образом. Смешивание проводили в обогреваемом экструдере объемом 250 см3. Экструдер разогревали до температуры 200°С, после чего засыпали в него гранулы полиолефина, в частности полиэтилена, и перемешивали. После полного расплавления полиэтилена в него добавляли глинопорошок монтмориллонита (ММТ), в количестве, не менее 5 об.%. Смесь интенсивно перемешивали при температуре расплава 210-225°С. Затем открывали выходное отверстие экструдера, выдавливали полученную смесь, из которой на ручном прессе формовали пластины (толщина 3 мм, ширина 24 мм, длина до 100 мм). Результаты электронной микроскопии показали равномерное распределение глины в полученном композите.

При изготовлении использовалась как исходная бентонитовая глина, так и глина, модифицированная антипиренами (полифосфат аммония, пептаэритрит). Содержание антипирена составляло от 3 до 10%.

Были изготовлены опытные образцы огнестойкого полимерного композита с содержанием в нем монтмориллонита (ММТ) от 3 до 15 об.%.

Результаты морфологического и элементного исследований образцов полимерного композита методом сканирующей электронной микроскопии, произведенной с помощью сканирующего электронного микроскопа JSM-6390 (JEOL, Япония) с системой рентгеновского микроанализа INCA показали, что композит имеет пластинчатую структуру (фиг.1, 2), при этом толщина слоев укладывается в характерные для наноструктур размеры - не более 0,1 мкм.

Полученные образцы подвергали испытаниям на горючесть

Примеры проведения испытаний сгруппированы в таблице.

Предварительная оценка горючести, определяемая по времени воспламенения и скорости горения, показала следующее.

Воспламенение образцов с содержанием монтмориллонита (ММТ) от 5 до 15% происходило со значительной задержкой по сравнению с контрольным образцом (результаты приведены в таблице). Образование горящих капель не наблюдалось.

В образце с добавлением антипирена (полифосфат аммония) наблюдалось еще большее снижение времени воспламеняемости по сравнению с образцами, имеющими в составе нанокомпозита только монтмориллонит (ММТ) (сравнение образцов №3 и №7).

Таким образом, заявляемый огнестойкий полимерный композит, используемый в качестве сердечника для панелей, обладает устойчивостью к возгоранию, что в сочетании с внешними металлическими слоями, присутствующими в конструкции композитных панелей, обеспечивает высокую огнестойкость этих панелей в целом. Имея при этом сравнительно невысокую стоимость, огнестойкий полимерный композит является перспективным материалом для применения в строительстве.

Горючесть огнестойкого полимерного композита для панелей Пример № п/п Содержание монтмориллонита (ММТ) в композите (об.%) Время воспламенения, с 1 Контрольный образец (полиэтилен) 11 2 3 12 3 5 15 4 7 16 5 10 18 6 15 18 7 5+5 об.% полифосфата аммония 17

Похожие патенты RU2465290C1

название год авторы номер документа
МЕТАЛЛИЧЕСКАЯ КОМПОЗИТНАЯ ПАНЕЛЬ 2011
  • Клименков Александр Ибадулович
  • Чесноков Николай Васильевич
  • Кузнецов Борис Николаевич
RU2464393C1
СПОСОБ ПОЛУЧЕНИЯ ЭКСФОЛИИРОВАННОГО НАНОКОМПОЗИТА 2010
  • Антипов Евгений Михайлович
  • Герасин Виктор Анатольевич
  • Гусева Мария Александровна
RU2443728C2
СУПЕРКОНЦЕНТРАТ И КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА ЕГО ОСНОВЕ 2012
  • Микитаев Абдулах Касбулатович
  • Микитаев Муслим Абдулахович
  • Хаширова Светлана Юрьевна
  • Абазова Оксана Алексеевна
  • Хаширов Азамат Аскерович
RU2513766C2
НАНОКОМПОЗИТНЫЙ ЭЛЕКТРОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ 2011
  • Микитаев Абдулах Касбулатович
  • Хаширова Светлана Юрьевна
  • Микитаев Муслим Абдулахович
  • Шоранова Лиана Олеговна
  • Леднев Олег Борисович
RU2468459C1
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМОДИФИЦИРОВАННОГО МОНТМОРИЛЛОНИТА С ПОВЫШЕННОЙ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТЬЮ (ВАРИАНТЫ) 2013
  • Штепа Сергей Вячеславович
  • Бахов Федор Николаевич
  • Черкина Ульяна Юрьевна
RU2519174C1
ОГНЕСТОЙКИЙ НАНОКОМПОЗИТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Хаширова Светлана Юрьевна
  • Микитаев Абдулах Касбулатович
  • Гаиева Регина Рашидовна
RU2491317C2
СПОСОБ ОЧИСТКИ НЕМОДИФИЦИРОВАННОГО БЕНТОНИТА НА ОСНОВЕ МОНТМОРИЛЛОНИТА 2013
  • Штепа Сергей Вячеславович
  • Бахов Федор Николаевич
  • Скоробогатов Никита Валентинович
RU2520434C1
ПОЛИВИНИЛХЛОРИДНЫЕ ПЕНЫ 2004
  • Ли Мин-Хи
  • Ли Бонг-Кеун
  • Чои Ки-Деог
RU2286360C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ НА ОСНОВЕ МИКРО- И НАНОДИСПЕРСНЫХ КЕРАМИЧЕСКИХ ПОРОШКОВ 2009
  • Полубояров Владимир Александрович
  • Гончаров Алексей Иванович
  • Коротаева Зоя Алексеевна
  • Белкова Татьяна Борисовна
RU2433082C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ОРГАНОМОДИФИЦИРОВАННЫХ ГЛИН, ИСПОЛЬЗУЕМЫХ В КАЧЕСТВЕ МАТРИЦЫ ИЛИ НАПОЛНИТЕЛЯ В НАНОКОМПОЗИТАХ 2009
  • Мусаев Юрий Исрафилович
  • Хаширова Светлана Юрьевна
  • Микитаев Абдуллах Казбулатович
  • Мусаева Элеонора Борисовна
  • Лигидов Мухамед Хусенович
RU2417161C2

Иллюстрации к изобретению RU 2 465 290 C1

Реферат патента 2012 года ОГНЕСТОЙКИЙ ПОЛИМЕРНЫЙ КОМПОЗИТ ДЛЯ ПАНЕЛЕЙ

Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов. Полимерный композит имеет слоистую структуру, образованную прослойками полимера нанометровой толщины между слоями модифицированного антипиренами бентонита. При этом состав бентонита содержит не менее 70-72% монтмориллонита (ММТ) с содержанием последнего в композите не менее 5 об.%. Заявляемый композит имеет относительно низкую стоимость и высокую огнестойкость. 1 з.п. ф-лы, 2 ил., 1 табл., 7 пр.

Формула изобретения RU 2 465 290 C1

1. Огнестойкий полимерный композит для панелей на основе полиолефина, отличающийся тем, что представляет собой нанокомпозит, имеющий слоистую структуру, образованную прослойками полимера нанометровой толщины, сформированными между слоями, модифицированного антипиренами бентонита, в состав которого входит не менее 70-72% монтмориллонита (ММТ) с содержанием последнего в композите не менее 5 об.%, при этом бентонит для получения нанокомпозита используют в виде глинопорошка, а содержание антипиренов в бентоните составляет 3-10 мас.%.

2. Огнестойкий полимерный композит для панелей по п.1, отличающийся тем, что содержит полиолефин, который является, по крайней мере, одним представителем, выбранным из группы, состоящей из полиэтилена, полипропилена.

Документы, цитированные в отчете о поиске Патент 2012 года RU2465290C1

СПОСОБ ПРИГОТОВЛЕНИЯ ПОЛИОЛЕФИНОВЫХ НАНОКОМПОЗИТОВ 2003
  • Моад Грейм
  • Саймон Джорж Филип
  • Дин Кэтрин Мари
  • Ли Гуосинь
  • Мейяданн Рошан Тиррел Антон
  • Пфэнднер Рудольф
  • Вермтер Хендрик
  • Шнайдер Армин
RU2360933C2
НАНОКОМПОЗИТЫ НА ОСНОВЕ СЛОИСТЫХ СИЛИКАТОВ, 26.11.2009 Найдено: Интернет: http://www
Солесос 1922
  • Макаров Ю.А.
SU29A1
Нанополимерные суперконцентраты, 01.02.2010
ПАРОПЕРЕГРЕВАТЕЛЬ ДЛЯ ЛОКОМОБИЛЬНЫХ КОТЛОВ 1912
  • Котомин С.М.
SU277A1
Устройство в регистрирующих счетных машинах для передачи в счетный механизм выбитого клавишею числа 1927
  • Заводы Вандерер, Быв. Виккельгофер И Иенике, Акц. О-Во
SU10585A1

RU 2 465 290 C1

Авторы

Клименков Александр Ибадулович

Чесноков Николай Васильевич

Кузнецов Борис Николаевич

Даты

2012-10-27Публикация

2011-03-14Подача