Изобретение относится к области создания экологически чистого и экономически эффективного слоистосиликатного полимерного суперконцентрата и композиционных материалов на его основе, обладающих повышенными эксплуатационными свойствами. Изобретение может быть применено при создании качественных конструкционных изделий, а также в автомобилестроении, кабельной, строительной и других отраслях промышленности. Суперконцентраты позволяют значительно упростить процесс введения наноразмерного наполнителя в полимерную матрицу, что обеспечит различные отрасли техники высокопрочными конструкционными и электроизоляционными материалами с комплексом ценных свойств.
Известно, что добавки нанодисперсных слоистых силикатов в полимерные матрицы могут существенно влиять на физико-механические свойства и на механизмы термоокислительной деструкции и горения нанокомпозитов. Среди представителей нанокомпозитов особое внимание сегодня уделяется полимерным нанокомпозитам, содержащим слоистосиликатные нанотрубки. Малые линейные размеры, большое отношение длины к диаметру, а также уникальная структура слоистосиликатных нанотрубок определяют их необычные физико-химические и физико-механические свойства. У полученных на их основе нанокомпозитов, по сравнению с исходным полимером, обнаруживается улучшение свойств, таких как твердость, ударная вязкость, пониженная горючесть и др.
Поэтому разработка новых путей получения таких наноматериалов представляется актуальной задачей.
Известен способ получения нанокомпозита по заявке РФ №2010120026, заключающийся в предварительном создании суперконцентрата из полиэтилена и наночастиц с концентрацией наночастиц от 20 до 50 мас.% путем смешения расплава полиэтилена и наночастиц в экструдере при температуре 160-220°C, после чего смешивают суперконцентрат с полиэтиленом при соотношении, необходимом для получения нанокомпозита, в котором содержание наполнителя составляет от 1 до 5% от массы полиэтилена. В качестве наночастиц используют наноразмерные молекулярные силиказоли, поверхность которых модифицирована алкильными группами химической структурой (-CnH2n+1), где n находится в пределах от 10 до 18. Недостатком данного изобретения является относительно высокая стоимость наноразмерных молекулярных силиказолей.
В патенте РФ №2424263 описывается способ получения целлюлозосодержащего полимерного суперконцентрата и композиционных материалов на его основе. Способ включает пластификацию при экструдировании дисперсных компонентов, а именно целлюлозного наполнителя и термопластичной полимерной матрицы. Термопластичная полимерная матрица состоит из полиэтилена высокой плотности, компатибилизатора, в виде графт полиолефина и смазочного агента. В качестве смазочного агента используют смесь предварительно озонированных гомологов полиэтилена в виде сверхмолекулярного полиэтилена, линейного полиэтилена низкой плотности и этиленвинилацетата при соотношении их 1:3:5. В качестве графт полиолефина в составе компатибилизатора используют полиэтилен высокой плотности, к молекулярной структуре которого привит глицидилметакрилат. Использование такого компатибилизатора способствует повышению энергетической совместимости дисперсных компонентов, используемых при получении целлюлозосодержащего полимерного суперконцентрата.
Однако технология получения данного суперконцентрата требует дополнительного использования графт полиолефина, что приводит к усложнению технологии и повышению стоимости концентрата.
Недостатками способа получения указанного суперконцентрата являются необходимость использования смазочного агента и компатибилизатора, дополнительные операции, связанные с озонированием гомологов полиэтилена.
В качестве наполнителя в суперконцентрате, улучшающего прочностные свойства термопластичного композита, авторы патентов США №3764456 и №442243, использовали слюду.
В силу своих физических свойств использование слюды, как неорганического наполнителя, сопряжено с рядом трудностей, а именно эти абразивные наполнители значительно ускоряют износ рабочих органов оборудования и при этом снижают сроки его эксплуатации. Композиции на их основе являются хрупкими, обладают высокой удельной плотностью, что ограничивает число их потенциальных применений.
Наиболее близким по совокупности признаков к предлагаемому техническому решению является способ получения дисперснонаполненных суперконцентратов на основе макроциклического олигомера и слоистосиликатного наполнителя (патент США №20060004135). Суперконцентрат содержит не менее 15% макроциклического олигомера от массы наполнителя. Причем в качестве макроциклического олигомера предпочтительно используются полиэфирные олигомеры с низкой вязкостью расплава, а в качестве слоистосиликатного наполнителя минералы или синтетические материалы, имеющие слоистую структуру с толщиной слоев в диапазоне 5-100 ангстрем, модифицированные аммониевыми органическими соединениями. К аммониевым соединениям относят обычно только четвертичные аммониевые соли. Суперконцентрат получают как методом предварительного растворения макроциклического олигомера в хлористом метилене и смешивании со слоистоликатным наполнителем в растворителе, так и в процессе смешения в расплаве олигомера.
Недостатком данного метода получения суперконцентрата является высокая стоимость зарубежной органоглины и сложная технология получения органомодификатора.
Задача изобретения - использование бентонитовой глины российского месторождения, упрощение процесса активации поверхности бентонита, снижение стоимости слоистосиликатного наполнителя, за счет замены импортных и улучшение физико-механических свойств промышленных полимеров.
Технический результат достигается тем, что суперконцентрат на основе циклического олигомера бутилентерефталата, хлористого метилена и слоистосиликатных наполнителей, содержит в себе в качестве слоистосиликатных нанонаполнителей галлуазит Al4[Si4O10][OH]8×4Н2O, с удельной поверхностью 35-70 м2/г, диаметром трубок 5-20 нм, длиной 100-150 нм или монтмориллонит месторождения Герпегеж Кабардино-Балкарской республики катионнобменной емкостью 95 мг-экв/100 г глины, предварительно очищенные от балластных веществ в гидроциклоне и модифицированные мочевиной в количестве 10% от их массы, а также циклический олигомер бутилентерефталата с MM=220×N (N=2-7) г/моль и имеет формулу:
при следующем, соотношении компонентов, масс.ч.: циклический олигомер бутилентерефталата 5-6; метилен хлористый 100; наполнитель слоистосиликатный 12-14.
Полученные гранулы суперконцентрата используют для получения композиционных материалов на базе полипропиленового (ПП) или полибутилентерефталатового (ПБТ) полимеров в количествах 100 мас.ч. - полимеров и соответственно суперконцентрата - 0,1 или 0,5 мас.ч.
Пример 1.
Циклический олигомер бутилентерефталата в количестве 6,2 мас.ч. растворяют в 100 мас.ч хлористого метилена. В полученный раствор добавляют 12,64 мас.ч. органомодифицированного монтмориллонита и перемешивают при комнатной температуре с помощью механической мешалки до получения однородной суспензии. Раствор выливают на алюминиевую фольгу и помещают под вытяжной шкаф до удаления остатков растворителя. Полученный порошок содержит в себе 10,74% монтмориллонита.
Пример 2.
Циклический олигомер бутилентерефталата в количестве 7,2 мас.ч. растворяют в 100 мас.ч. хлористого метилена. В полученный раствор добавляют 12,75 мас.ч. органомодифицированного галлуазита и перемешивают при комнатной температуре с помощью механической мешалки до получения однородной суспензии. Раствор выливают на алюминиевую фольгу и помещают под вытяжной шкаф до удаления остатков растворителя. Полученный порошок содержит в себе 10.6% галлуазита.
Для получения композиционного материала использовалось стандартное лабораторное оборудование: смеситель, экструдер, измельчитель и известные методики испытаний полученных материалов и соответствующее для этих целей оборудование:
По ГОСТ 11262-80 - определение прочности и относительного удлинения при разрыве с использованием разрывной машины типа 1104000, пр-ва Италия.
По ГОСТ 19109-84, ISO 180 - определение ударной прочность по Изоду, на испытательной машине фирмы ЧЕАСТ.
По ГОСТ 5960-72 - определение горючести композиции, методом A;
По ГОСТ 11645-73 - определение показателя текучести расплава (ПТР) с использованием испытательной машины фирмы ИИРТ;
По ISO 868 - определение твердости по Шору, с использованием твердомера производства Германии, фирмы Hildebrand.
Полученные композиционные материалы и результаты их испытаний приведены в таблице 1 и 2
Из приведенных в таблице результатов следует, что использование слоистосиликатного полимерного суперконцентрата для получения различных композиционных материалов по заявленному изобретению приводит не только к повышению прочностных, но и физико-механических характеристик материалов, предлагаемых для создания качественных защитных конструкционных, изделий общетехнического и инженерно-технического назначения.
Техническим результатом заявляемого изобретения является:
повышение энергетической совместимости дисперсных компонентов, используемых при получении суперконцентрата на основе слоистосиликатного наполнителя и термопластичной матрицы;
создание композиционного материала на основе полученного суперконцентрата с повышенными физико-механическими характеристиками.
название | год | авторы | номер документа |
---|---|---|---|
Композиционный материал | 2016 |
|
RU2646435C2 |
НАНОКОМПОЗИТНЫЙ ЭЛЕКТРОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ | 2011 |
|
RU2468459C1 |
ЭЛЕКТРОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ | 2011 |
|
RU2456693C1 |
НАНОКОМПОЗИТ С НИЗКОЙ ГАЗОПРОНИЦАЕМОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) | 2010 |
|
RU2461515C2 |
СПОСОБ ПОЛУЧЕНИЯ ЭКСФОЛИИРОВАННОГО НАНОКОМПОЗИТА | 2010 |
|
RU2443728C2 |
Полимерная композиция с улучшенными барьерными свойствами и способ его получения | 2015 |
|
RU2610771C2 |
ПОЛИМЕРНЫЙ КОМПОЗИЦИОННЫЙ НАНОМАТЕРИАЛ | 2014 |
|
RU2605590C2 |
Полиэтилентерефталатная полимерная композиция и способ ее получения | 2015 |
|
RU2610772C2 |
НАНОКОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ БИОЦИДНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2017 |
|
RU2679804C1 |
КОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ | 2014 |
|
RU2598940C2 |
Изобретение относится к экологически чистым и экономически эффективным слоистосиликатным полимерным суперконцентратам и композиционным материалам на его основе и может быть использовано при создании качественных конструкционных изделий в автомобилестроении, кабельной, строительной и других отраслях промышленности. Суперконцентрат содержит циклический олигомер бутилентерефталата, хлористый метилен и слоистосиликатный нанонаполнитель, который представляет собой предварительно очищенный от балластных веществ и модифицированный мочевиной галлуазит или монтмориллонит. Использование указанного суперконцентрата позволяет значительно упростить процесс введения наноразмерного наполнителя в полимерную матрицу для получения композиционных материалов на основе полипропилена или полибутилетерефталата. При этом полученные композиционные материалы обладают необходимыми повышенными физико-механическими характеристиками. 2 н. и 1 з.п. ф-лы, 2 табл., 2 пр.
1. Суперконцентрат на основе циклического олигомера бутилентерефталата, хлористого метилена и слоистосиликатных наполнителей, отличающийся тем, что в качестве слоистосиликатных нанонаполнителей он содержит галлуазит или монтмориллонит, предварительно очищенные в гидроциклоне и обработанные мочевиной в количестве 10% от массы слоистосиликатного наполнителя, при следующем соотношении компонентов, мас.ч.:
2. Суперконцентрат по п.1, отличающийся тем, что используемый слоистосиликатный наполнитель монтмориллонит представляет собой продукт месторождения Герпегеж Кабардино-Балкарской республики катионнобменной емкостью 95 мг-экв/100 г глины.
3. Композиционный материал, содержащий суперконцентрат по п.1 и полимер, отличающийся тем, что в качестве полимера используют полипропилен или полибутилентерефталат общего назначения, при следующем соотношении компонентов, мас.ч.:
Циклические олигомерные бутилентерефталаты: свойства и применение / В | |||
В | |||
Сазонов, М | |||
А | |||
Микитаев, А | |||
К | |||
Микитаев // Пластические массы | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
- С | |||
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы | 1923 |
|
SU12A1 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
ПОЛИМЕРСОДЕРЖАЩАЯ КОМПОЗИЦИЯ, ЕЕ ПОЛУЧЕНИЕ И ИСПОЛЬЗОВАНИЕ | 2005 |
|
RU2382795C2 |
Авторы
Даты
2014-04-20—Публикация
2012-02-27—Подача