СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ РАСТВОРА ГИПОХЛОРИТОВ МАГНИЯ И МЕДИ Российский патент 2012 года по МПК C25B1/26 

Описание патента на изобретение RU2466214C1

Способ электрохимического получения раствора гипохлоритов магния и меди.

Изобретение относится к области получения растворов гипохлоритов электролизом.

Известен способ получения раствора гипохлоритов магния, включающий электролиз раствора хлоридов металлов с использованием нерастворимого анода, при этом электролизу подвергают раствор, содержащий хлорид магния в виде бишофита, борную кислоту, сульфат магния и сульфат кальция при рН 4,5-6,0 в электролизере без диафрагмы с анодом из графита и катодом из титана при плотности тока 8-12 А/дм2 и температуре 20-50°С (см. описание изобретения к авторскому свидетельству СССР №1624057, МПК С25В 1/26, публикация 30.01.1991).

Недостатком известного способа является отсутствие растворимого анода. На используемом в качестве анода графите протекают реакции окисления хлорид-ионов с генерацией гипохлорит-ионов, что приводит к увеличению плотности тока. В остальном ионный состав используемого раствора остается неизменным.

В этом же источнике информации (см. №1624057, пример 10, стр.5 и 6) описан способ получения раствора гипохлоритов магния, в котором для приготовления исходного раствора для электролиза берут 0,9 л воды, растворяют в ней 165 г кристаллического бишофита с содержанием 45% MgCl2 и получают 1 л исходного раствора, содержащего 70 г/л MgCl2, pH 5,3. Электролиз проводят в электролизере без диафрагмы с анодом из графита и катодом из титана, при плотности тока 8 А/дм2, температуре электролита 30°C и напряжении 2,8-3,0 В в течение 4 часов 50 минут, осуществляя дополнительно непрерывное интенсивное перемешивание раствора.

Недостатком этого известного способа является высокие плотности тока, используемые в способе и длительное осуществление процесса с дополнительным интенсивным перемешиванием раствора.

Известен способ получения раствора гипохлорита магния, включающий электролиз водного раствора хлоридов магния в виде бишофита в электролизере с анодом из угольного графита и катодом из стали, на постоянном токе при плотности тока 0,1-1,5 А/дм2 и температуре электролита 20°С (см. описание изобретения к патенту РФ №2238348, МПК С25В 1/26, 1/18, публикация 20.10.2004).

Недостатком известного способа является использование в качестве анода графита, что позволяет получать только один продукт- гипохлорит магния.

Известен способ получения гипохлоритов магния и меди, включающий электролиз водного раствора хлоридов магния, полученных растворением природного бишофита в непроточном бездиафрагменном электролизере с медными электродами, на которые подают постоянный ток напряжением 1-25 В, плотностью 1-10 A/дм2, при концентрации электролита 0,5-2% и температуре 20-25°С, процесс электролиза осуществляют в течение 0,5 часа (см. описание изобретения к патенту РФ №2361016, MПK С25В 1/00, публикация 10.07.2009).

Недостатком этого известного способа, выбранного в качестве прототипа, является для проведения процесса использование тока постоянного направления. В результате, за счет постоянства токового режима, происходит поляризация электродов. В результате этого для получения единицы продукта (гипохлоритов магния и меди) расходуется излишнее количество электрической энергии, уменьшается выход по току получаемой продукции.

Задачей заявляемого изобретения является повышение эффективности процесса получения гипохлорита магния и меди за счет уменьшения расхода электрической энергии на получение единицы продукции в виде раствора гипохлоритов магния и меди.

Сущность заявляемого изобретения заключается в следующем. Способ электрохимического получения раствора гипохлоритов магния и меди, включающий электролиз водного раствора хлоридов магния, полученных растворением природного бишофита, в непроточном бездиафрагменном электролизере с медными электродами, на которые подают электрический ток напряжением 3-5 В (в зависимости от величины используемой плотности тока), при температуре электролита 22-25°С. Отличием является то, что на медные электроды подают импульсный ток средней плотностью 0,5-1,0 А/дм2, частотой 100-200 Гц и скважностью импульсов 2-4 при концентрации электролита 5-10% и рН 8-9, процесс электролиза осуществляется в течение 0,25-0,5 часа. Это позволяет увеличить выход по току продукта гипохлорита магния и меди при плотностях тока, значения которых равны плотностям постоянного тока.

Способ осуществляют следующим образом.

Заявляемый способ может быть реализован в электролизере с неразделенными анодным и катодным пространствами непрерывного или периодического действия с медным катодом в растворе минерала бишофита (хлорида магния) концентрацией 5-10% и pН 8-9. Электролизер подключен к источнику импульсного тока частотой 100-200 Гц, скважностью 2-4, с средней плотностью тока 0,5-1.0 А/дм2, процесс электролиза осуществляется в течение 0,25-0,5 часа.

Примеры конкретного исполнения представлены в таблицах 1, 2, 3, где показано влияние плотности, скважности на выход по току ионов меди и активного хлора.

Таблица 1 Плотность тока, А/дм2 Концентрация электролита, % Выход по току, % Удельные затраты Гипохлорит меди Гипохлорит магния энергии, кВт·час/кг 0,5 10 55,3 45,1 5,1 0,75 10 58,1 47,2 6,8 1,0 10 61,0 48,2 7,3 0,5 5 44,3 27,1 7,3 0,75 5 51,0 29,0 7,8 1,0 5 54,7 30,0 8,2

Таблица 2 Плотность тока, А/дм2 Концентрация электролита, % Импульсный ток 100 Гц, выход но току(%) при скважности Гипохлорит меди Гипохлорит магния Удельные затраты энергии, кВт·час/кг 2 3 4 2 3 4 2 3 4 0,5 10 65,0 65,8 66,2 35,0 34,2 35,3 4,1 4,3 4,6 0,75 10 67,5 67,6 67,7 32,5 32,7 32,3 3,8 4,0 4,1 1,0 10 69,4 69,0 68,8 30,6 31,0 31,2 5,2 5,1 4,9 0,5 5 52,4 52,3 52,2 47,6 47,7 47,8 6,8 6,7 6,6 0,75 5 52,0 52,1 52,7 48,0 47,9 47,3 7,1 7,4 7,6 1,0 5 55,7 55,0 54,8 44,3 45,0 45,2 7,3 7,6 7,8

Таблица 3 Плотность тока, А/дм2 Концентрация электролита, % Импульсный ток 200 Гц, выход по току(%) при скважности Гипохлорит меди Гипохлорит магния Удельные затраты энергии, кВт·час/кг 2 3 4 2 3 4 2 3 4 0,5 10 66,1 66,4 67,2 33,9 33,6 32,8 4,3 4,6 4,9 0,75 10 67,3 67,1 67,4 32,7 32,9 32,6 3,7 4,5 4,1 1,0 10 68,2 67,9 67,8 31,8 32,1 32,2 4,2 4,6 4,9 0,5 5 53,4 52,5 52,1 46,6 47,5 47,9 6,8 6,7 6,5 0,75 5 51,0 51,7 52,1 49,0 48,3 47,9 7,9 7,1 7,3 1,0 5 53,0 53,4 53,4 47,0 46,5 46,6 7,4 7,6 7,9

Использование постоянного тока (таблица 1) позволяет при концентрации электролита 10% получать при плотности тока 0,5 А/дм2 выход по току для гипохлорита меди 55,3%, гипохлорита магния 45,1%.

Применение импульсного тока частотой 100 Гц, той же плотности при скважности 2 (таблица 2) увеличивает выход гипохлорита меди до 65.0%. В диапазоне используемых равных плотностей тока увеличение плотности импульсного тока до 1,0 А/дм2 (скважность 2) приводит к возрастанию выхода по току гипохлорита меди с 61,0 для постоянного до 69,4% (увеличение на 13,8%).

Увеличение скважности импульсного тока частотой 100 Гц от 2 до 3 при одинаковых значениях плотностей тока (таблица 2) из растворов электролита одинаковой концентрации приводит к большему выходу по току гипохлорита меди, чем при использовании постоянного тока: при плотности 0,75 А/дм2 увеличение скважности от 2 до 3 и 4 соответственно по отношению к постоянному току составляет: 2-14%, 3-16,4%, 4-16,5%.

Использование импульсного тока частотой 200 Гц (таблица 3) при равных с постоянным током плотностях и концентрации электролита 5% также приводит к большему выходу гипохлорита меди. Например: при плотности тока 0,5 А/дм2 увеличение скважности от 2 до 4 приводит к увеличению выхода продукта, по сравнению с постоянным током, на проценты: 2-20,5%, 3-18%, 4-17%.

Применение импульсного тока частотой 100 Гц скважностью 2, 3, 4 при одинаковых с постоянным током плотностях тока приводит к сокращению затрат электрической энергии на единицу массы продукта. Например, при плотности тока 0,5 А/дм2 в электролите с концентрацией 10% удельные затраты энергии составляют 5,1 кВт·час/кг, при импульсном токе 100 Гц и, соответственно, скважностях 2, 3, 4 составляют: 2-4,1 кВт·час/кг (24% выигрыша), 3-4,3 кВт·час/кг (18,6% выигрыша), 4-4,6 кВт·час/кг (4,1% выигрыша).

При использовании тока частотой 200 Гц при тех же скважностях и плотности тока 1,0 А/дм2: 2-4,2 кВт·час/кг (73,8% выигрыша), 3-4,6 кВт·час/кг (58,7% выигрыша), 4-4,9 кВт·час/кг (48,9% выигрыша).

Приведенные примеры по влиянию плотности тока, формы, частоты и скважности импульсного тока в сравнении с постоянным током одинаковой плотности тока показывают, что выход по току продукта электролиза увеличивается.

Заявленное изобретение позволяет при замене постоянного тока импульсным током при тех же плотностях тока 0,5-1,0 А/дм2 увеличить выход по току гипохлоритов меди, снизить расход электрической энергии при электролизе раствора бишофита.

Похожие патенты RU2466214C1

название год авторы номер документа
Способ электрохимического получения раствора гипохлоритов магния и меди 2018
  • Наумова Галина Алексеевна
  • Фомичев Валерий Тарасович
  • Купцов Никита Дмитриевич
RU2713176C2
СПОСОБ ПОЛУЧЕНИЯ ГИПОХЛОРИТА 2003
  • Фомичев В.Т.
  • Куликова И.А.
  • Лебедев Д.Н.
  • Бурдова Н.Г.
  • Геращенко А.А.
RU2238348C1
СПОСОБ ПОЛУЧЕНИЯ ФУНГИЦИДОВ МЕДИ 2008
  • Фомичев Валерий Тарасович
  • Лаврикова Наталья Алексеевна
RU2361016C1
Способ получения раствора смеси хлората и гипохлорита магния 1987
  • Лецких Евгений Степанович
  • Коробицын Анатолий Семенович
  • Обозюк Виктор Иванович
  • Большакова Елена Вадимовна
SU1624057A1
Средство для лечения некробактериоза крупного рогатого скота 2019
  • Овчинников Алексей Семенович
  • Древин Валерий Евгеньевич
  • Фомичев Валерий Тарасович
  • Филимонова Наталья Алексеевна
RU2714322C1
АНТИСЕПТИЧЕСКИЙ ОГНЕЗАЩИТНЫЙ СОСТАВ ДЛЯ ДРЕВЕСИНЫ 2012
  • Фомичев Валерий Тарасович
  • Филимонова Наталья Алексеевна
  • Комкова Светлана Витальевна
RU2497662C1
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ ВОДНЫХ СИСТЕМ МИНЕРАЛИЗОВАННЫМИ ПРОМЫШЛЕННЫМИ ВОДАМИ В ВИДЕ РАСТВОРОВ ГИПОХЛОРИТА 2013
  • Чантурия Валентин Алексеевич
  • Козлов Андрей Петрович
  • Двойченкова Галина Петровна
  • Миненко Владимир Геннадиевич
  • Самусев Андрей Леонидович
RU2540616C2
СРЕДСТВО ДЛЯ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 2009
  • Фомичев Валерий Тарасович
  • Лаврикова Наталья Алексеевна
  • Белицкая Мария Николаевна
RU2412575C1
СПОСОБ ЭЛЕКТРООСАЖДЕНИЯ ПОКРЫТИЙ СПЛАВОМ ХРОМ-КОБАЛЬТ 1998
  • Спиридонов Б.А.
  • Шалимов Ю.Н.
RU2130091C1
СПОСОБ ОЧИСТКИ ВЕНТИЛЯЦИОННЫХ ВЫБРОСОВ ОТ СЕРОВОДОРОДА 2023
  • Исраилов Руслан Васильевич
  • Пчельников Игорь Викторович
  • Фесенко Александр Львович
  • Черкесов Аркадий Юльевич
  • Щукин Сергей Анатольевич
RU2818437C1

Реферат патента 2012 года СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ РАСТВОРА ГИПОХЛОРИТОВ МАГНИЯ И МЕДИ

Изобретение относится к области получения растворов гипохлоритов электролизом, в частности к способу электрохимического получения раствора гипохлоритов магния и меди. Способ включает электролиз водного раствора хлоридов магния, полученных растворением природного бишофита, в непроточном бездиафрагменном электролизере с медными электродами, на которые подают электрический ток напряжением 3-5 В, при температуре электролита 20-25°С. При этом на медные электроды подают импульсный ток средней плотности 0,5-1,0 А/дм2, частотой 100-200 Гц и скважностью 2-4, при концентрации электролита 5-10% и рН 8-9. Электролиз осуществляют в течение 0,25-0,5 часа. Техническим результатом является увеличение выхода гипохлоритов меди и магния от 18 до 20% и снижение затрат электрической энергии на получение единицы продукта на треть. 3 табл.

Формула изобретения RU 2 466 214 C1

Способ электрохимического получения раствора гипохлоритов магния и меди, включающий электролиз водного раствора хлоридов магния, полученных растворением природного бишофита, в непроточном бездиафрагменном электролизере с медными электродами, на которые подают электрический ток напряжением 3-5 В, при температуре электролита 20-25°С, отличающийся тем, что на медные электроды подают импульсный ток средней плотности 0,5-1,0 А/дм2, частотой 100-200 Гц и скважностью 2-4, при концентрации электролита 5-10% и рН 8-9, и электролиз осуществляют в течение 0,25-0,5 ч.

Документы, цитированные в отчете о поиске Патент 2012 года RU2466214C1

СПОСОБ ПОЛУЧЕНИЯ ФУНГИЦИДОВ МЕДИ 2008
  • Фомичев Валерий Тарасович
  • Лаврикова Наталья Алексеевна
RU2361016C1
СПОСОБ ПОЛУЧЕНИЯ ГИПОХЛОРИТА 2003
  • Фомичев В.Т.
  • Куликова И.А.
  • Лебедев Д.Н.
  • Бурдова Н.Г.
  • Геращенко А.А.
RU2238348C1
DE 3145997 A1, 01.06.1983
US 4049531 A, 20.09.1977
WO 03023089 A1, 20.03.2003
US 4136005 A, 06.09.1976
EP 0826794 A1, 04.03.1998.

RU 2 466 214 C1

Авторы

Фомичев Валерий Тарасович

Наумова Галина Алексеевна

Даты

2012-11-10Публикация

2011-07-01Подача