Изобретение относится к области обработки промышленных и сточных вод и, в частности, к переработке минерализованных промышленных вод в гипохлоритные соединения, используемые в качестве реагента для обеззараживания водных систем.
Известен способ получения раствора гипохлорита натрия на месте потребления путем электролиза природных электролитов - подземных минерализованных и морских вод. При реализации данного способа эксплуатационные расходы определяются в основном затратами электроэнергии, поэтому с целью снижения энергетических затрат процесс проводят в направлении получения слабоконцентрированных растворов гипохлорита натрия с содержанием активного хлора 0,2÷1,0 г/л. При промышленной реализации данной схемы электролит без какой-либо предварительной обработки с заданным расходом подается на электролизную установку, а затем в бак-накопитель гипохлорита натрия или прямо в обрабатываемые системы [Г.Л. Медриш, А.А. Тейшева, Д.Л. Басин. «Обеззараживание природных и сточных вод с использованием электролиза», М., Стройиздат, 1982 г.].
Недостатками способа являются:
- необходимость присутствия вблизи места потребления и производства растворов гипохлоритов морских вод или подземных растворов - залегание подземных рассолов в большинстве случаев на глубинах более 250 метров, что усложняет процесс их переработки в растворы гипохлорита;
- присутствие в подземных рассолах и морских водах в значительных количествах таких компонентов, как железо, литий, стронций, медь, свинец, цинк, кремний, фтор, мышьяк, сероводород, соединения азота и др., что усложняет процесс электролиза рассолов, а также ограничивает возможность использования полученных растворов гипохлорита для обеззараживания питьевых и сточных вод из-за требований к ПДК.
Наиболее близким по технической сущности и достигаемому результату является способ получения растворов гипохлорита натрия из растворов хлорида натрия или растворов смеси хлорида натрия с неорганическими и/или органическими солями общей минерализацией 50÷300 г/л. Данный способ предполагает получение дезинфицирующих растворов (нейтральный анолит АНД) путем приготовления исходного раствора смешением питьевой воды или низкоминерализованного водного раствора с высокоминерализованным водным раствором электролита с обработкой полученного исходного раствора в анодной камере основного диафрагменного электрохимического реактора и последующей подачей раствора в анодную камеру дополнительного электрохимического реактора. В качестве высокоминерализованного раствора электролита используют раствор хлорида натрия или раствор смеси хлорида натрия с неорганическими и/или органическими солями общей минерализацией 50÷300 г/л [Патент № RU 2148027 C1. «Способ получения дезинфицирующего раствора - нейтрального анолита АНД». М кл. C02F 1/46, 1/47 от 01.02.1999 г. (прототип)].
Недостатком способа является то, что в предлагаемых условиях проводится электрохимическая обработка всего объема вод (маломинерализованной и высокоминерализованной). Кроме того, требуются большой расход соли, значительные затраты на ее доставку и хранение, что в комплексе приводит к высокой себестоимости готового продукта.
Использование диафрагменных электролизеров для получения активного хлора на месте его потребления нецелесообразно из-за сложности их изготовления, обслуживания, ремонта и высокой стоимости.
Целью изобретения является утилизация минерализованных промышленных вод в виде растворов гипохлорита, используемых для обеззараживания водных систем.
Указанная цель достигается получением растворов гипохлорита с концентрацией активного хлора от 80 до 600 мг/л из минерализованной промышленной воды, которые впоследствии используются в качестве реагента для обеззараживания сточных вод. Электрохимическая обработка минерализованных вод проводится в условиях, обеспечивающих минимальный расход электроэнергии на обработку 1 м3 оборотной воды (1÷4,8 кВт*ч) и получение 1 кг активного хлора (8÷16 кВт*ч): время обработки воды в электролизере - 10÷30 сек, плотность тока на электродах - 500÷750 А/м2.
Способ реализуется следующим образом.
Исходная минерализованная промышленная вода с концентрацией хлорид-ионов от 5 до 11 г/л поступает в бездиафрагменный электролизер на электрохимическую обработку. В процессе электролиза происходит насыщение минерализованной воды активным хлором за счет электрохимического перевода хлорид-иона в гипохлорит-ион. Таким образом, минерализованная вода превращается в раствор гипохлорита с концентрацией активного хлора от 80 до 600 мг/л.
В качестве электрохимического кондиционера воды используются бездиафрагменные электролизеры моно- или биполярного типа. Электроды (катоды и аноды) выполнены из ОРТА-И1 (титановая основа с покрытием, состоящим из смеси оксидов иридия и рутения). Применение таких электродов увеличивает срок службы электролизеров и позволяет удалять образующиеся соли жесткости на катодах методом переполюсовки (смены полярности).
Процесс электрохимической обработки минерализованной воды проводят при низких плотностях тока и малом времени обработки (время обработки воды в электролизере - 10÷30 сек, плотность тока на электродах - 500÷750 А/м2), что снижает эксплуатационные и капитальные затраты процесса (расход электроэнергии на обработку 1 м3 промышленной воды (1÷4,8 кВт*ч), на получение 1 кг активного хлора - (8÷16 кВт*ч)).
Полученный из минерализованной воды раствор гипохлорита подают в контактную емкость, в которой происходит:
1. Смешение раствора гипохлорита со сточными водами в соотношениях от 1:55 до 1:12 в зависимости от минерализации и ионного состава смешиваемых вод, так как смешанный продукт должен соответствовать требованиям ПДК (так, например, общая минерализация не должна превышать 1 г/л).
2. Контакт смешиваемых вод в течение 30 минут, обеспечивающий полное обеззараживание сточных вод (остаточная концентрация активного хлора находится в пределах 0,5÷1,2 мг/л).
Далее проводят сброс доведенного до норм ПДК продукта смешения.
Пример
В качестве исследуемых водных систем были выбраны: минерализованная промышленная вода Мирнинского ГОКа, продукты ее электролиза и продукты ее смешения с маломинерализованными сточными водами в различных соотношениях. Все исследуемые водные системы подвергались химическому анализу с целью контроля изменения их ионного состава и физико-химических характеристик.
Результаты экспериментальных данных по изучению зависимости концентрации гипохлорит-ионов в электрохимически обработанной промышленной воде от величины линейного тока, подаваемого на опытно-промышленный бездиафрагменный электролизер, и его производительности показали, что при производительности опытно-промышленного электролизера от 0,25 до 1,0 м3/ч возможно получение раствора гипохлорита натрия из оборотной воды с концентрацией активного хлора до 600 мг/л. Концентрация активного хлора в обработанной воде прямо пропорциональна величине линейного тока, подаваемого на электролизер.
Получение раствора гипохлорита из оборотной воды методом электролиза является стабильным процессом, показатели которого зависят только от времени обработки и величины линейного тока на электролизере (плотности тока на электродах).
С целью определения энергосберегающих режимов электрохимического кондиционирования промышленной воды Мирнинского ГОКа (МГОК) изучены зависимости удельного расхода электроэнергии на получение 1 кг активного хлора и обработку 1 м3 минерализованной воды от величины тока, подаваемого на электролизер, и его производительности.
В результате исследований установлено, что снижение производительности электролизера с 1,0 до 0,5 м3/ч при постоянной величине тока на электродах приводит к увеличению расхода электроэнергии на обработку 1 м3 оборотной воды примерно в 1,8 раза. Оптимальный режим электрохимической обработки оборотной воды обеспечил концентрацию активного хлора в обработанной воде при максимальной производительности электролизера и минимальной линейной токовой нагрузке (плотность тока на электродах), что позволило снизить расход электроэнергии на обработку 1 м3 оборотной воды и получение 1 кг активного хлора.
Этот режим электролиза осуществлялся следующими параметрами электрохимической обработки минерализованной воды: время обработки воды в электролизере - 11,5 сек, плотность тока на электродах - 500÷750 А/м2.
Удельный расход электроэнергии на обработку 1 м3 промышленной воды при этом составил 1,0÷4,8 кВт·ч/м3 кВт·ч, на получение 1 кг активного хлора от 8 до 16 кВт·ч при концентрации активного хлора в обработанной воде 156÷223 мг/л.
Также были выполнены эксперименты по использованию гипохлорита, полученного электрохимической переработкой минерализованной воды МГОКа, с определением оптимальной концентрации активного хлора в сточной воде, необходимой для полного ее обеззараживания, и допустимого соотношения смешения обработанной оборотной и сточной вод.
По требованиям комплекса очистных сооружений (КОС) после 30 минут контакта обеззараживающего реагента со сточной водой остаточная концентрация в ней активного хлора должна находиться в пределах от 0,5 до 1,2 мг/л.
В результате проведенных исследований было установлено, что для обеспечения остаточной концентрации активного хлора в заданных пределах в сточной воде после ее контакта в течение 30 минут с электрохимически обработанной оборотной водой исходная концентрация активного хлора в продукте их смешения составила около 5 мг/л, что на 7 мг/л меньше чем при использовании в качестве реагента жидкого хлора. Это объясняется более высокой активностью электрохимически полученного гипохлорита как обеззараживающего реагента.
Результаты контрольных химических анализов подтвердили возможность утилизации промышленной воды в виде раствора гипохлорита для обеззараживания сточных городских вод в объемах от 40 до 120 м3/ч. Остаточная концентрация активного хлора после обеззараживания сточных вод находится в пределах от 0,5 до 1,2 мг/л, что соответствует требованиям ПДК, а минерализация продуктов смешения не превышает величины 1 г/л.
Требуемая концентрация активного хлора в промышленной воде при ее утилизации в объеме от 40 до 120 м3/ч в виде раствора гипохлорита для обеззараживания сточных вод в объеме 2,2 тыс. м3/ч должна составлять от 96 до 190 мг/л.
Таким образом, в результате проведенных исследований установлено:
1. Возможность получения раствора гипохлорита с заданной концентрацией активного хлора методом электролиза минерализованной воды МГОКа и эффективность процесса обеззараживания городских сточных вод применением полученного продукта.
2. Хранение электрохимически полученного гипохлорита в течение суток не снижает его активность в процессе обеззараживания сточных вод.
3. Возможность утилизации промышленной воды МГОКа в объеме от 40 до 120 м3/ч в виде раствора гипохлорита для обеззараживания сточных вод. При этом остаточная концентрация активного хлора в продукте смешения составляет от 0,5 до 1,2 мг/л, а его минерализация не превышает 1 г/л, что соответствует требованиям КОС.
Таким образом, получение активных форм хлорсодержащих ионов из минерализованных промышленных вод и их использования в качестве реагента для обеззараживания сточных вод подтверждено примером.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ ВОД | 1994 |
|
RU2090517C1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ВОДЫ И УСТРОЙСТВО | 2012 |
|
RU2500625C1 |
СПОСОБ ОБРАБОТКИ ВОДЫ ГИПОХЛОРИТОМ НАТРИЯ И ПРОТОЧНЫЙ ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ГИПОХЛОРИТА НАТРИЯ | 1996 |
|
RU2100483C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА И ХЛОРСОДЕРЖАЩИХ ОКИСЛИТЕЛЕЙ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2315132C2 |
СПОСОБ ОЧИСТКИ МАГНЕТИТОВЫХ КОНЦЕНТРАТОВ ОТ СЕРЫ ЭЛЕКТРОЛИТИЧЕСКИМИ РАСТВОРАМИ ГИПОХЛОРИТА | 2012 |
|
RU2530040C2 |
СПОСОБ ОЧИСТКИ ДРЕНАЖНЫХ ВОД ПОЛИГОНОВ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ | 2000 |
|
RU2207987C2 |
СПОСОБ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ | 1999 |
|
RU2163894C2 |
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ ВОД | 1997 |
|
RU2121979C1 |
ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ГИПОХЛОРИТА НАТРИЯ | 2006 |
|
RU2349682C2 |
СПОСОБ ОЧИСТКИ ВЕНТИЛЯЦИОННЫХ ВЫБРОСОВ ОТ СЕРОВОДОРОДА | 2023 |
|
RU2818437C1 |
Изобретение относится к области обработки промышленных и сточных вод. Способ обеззараживания сточных вод включает их обработку растворами гипохлорита, полученными в электролизере из минерализованных промышленных вод. Обработку исходной минерализованной промышленной воды с концентраций хлорид-ионов от 5 до 11 г/л проводят в бездиафрагменном электролизере при режимах обработки воды по времени 10÷30 сек и с плотностью тока на электродах 500÷750 А/м2, получают раствор гипохлорита с концентрацией активного хлора от 80 до 600 мг/л, смешивают полученный раствор гипохлорита со сточными водами в соотношении от 1:55 до 1:12 при соответствии смешанного продукта нормам ПДК и обеспечивают контакт раствора гипохлорита со сточными водами в течение не менее 30 минут для полного их обеззараживания. Изобретение позволяет утилизировать минерализованные промышленные воды в виде растворов гипохлорита, используемых для обеззараживания сточных вод. 1 пр.
Способ обеззараживания сточных вод, включающий их обработку растворами гипохлорита, полученными в электролизере из минерализованных промышленных вод, отличающийся тем, что обработку исходной минерализованной промышленной воды с концентраций хлорид-ионов от 5 до 11 г/л проводят в бездиафрагменном электролизере при режимах обработки воды по времени 10÷30 сек и с плотностью тока на электродах 500÷750 А/м2, получают раствор гипохлорита с концентрацией активного хлора от 80 до 600 мг/л, смешивают полученный раствор гипохлорита со сточными водами в соотношении от 1:55 до 1:12 при соответствии смешанного продукта нормам ПДК и обеспечивают контакт раствора гипохлорита со сточными водами в течение не менее 30 минут для полного их обеззараживания.
СПОСОБ ПОЛУЧЕНИЯ ДЕЗИНФИЦИРУЮЩЕГО РАСТВОРА - НЕЙТРАЛЬНОГО АНОЛИТА АНД | 1999 |
|
RU2148027C1 |
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ | 2003 |
|
RU2233801C1 |
СПОСОБ ОБРАБОТКИ ВОДЫ ГИПОХЛОРИТОМ НАТРИЯ И ПРОТОЧНЫЙ ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ГИПОХЛОРИТА НАТРИЯ | 1996 |
|
RU2100483C1 |
Способ получения гипохлорита щелочных металлов | 1976 |
|
SU591531A1 |
Способ очистки сточных вод,содержащих ароматические кислоты | 1981 |
|
SU966035A1 |
US 4159929 A, 03.07.1979 |
Авторы
Даты
2015-02-10—Публикация
2013-07-03—Подача