СПОСОБ ДИСПЕРСИОННОЙ ФУРЬЕ-СПЕКТРОМЕТРИИ В НЕПРЕРЫВНОМ ШИРОКОПОЛОСНОМ ИЗЛУЧЕНИИ Российский патент 2012 года по МПК G01J3/45 

Описание патента на изобретение RU2468344C1

Изобретение относится к оптическим методам исследования материалов, а именно - к определению спектров комплексной диэлектрической проницаемости или оптических постоянных (показателя преломления n и показателя поглощения k) вещества в результате одновременных амплитудно-фазовых измерений в рабочем диапазоне частот зондирующего излучения и может найти применение в оптических исследованиях физико-химических процессов, в дисперсионной спектроскопии, в оптической контрольно-измерительной аппаратуре и рефрактометрии материалов.

Дисперсионная Фурье-спектроскопия (ДФС) позволяет определять в результате амплитудно-фазовых измерений частотные зависимости n и k (связанные известными соотношениями с комплексной диэлектрической проницаемостью) образца в оптическом диапазоне при использовании широкополосных источников излучения [1, 2].

Амплитудно-фазовая Фурье-спектроскопия, являющаяся разновидностью ДФС, основана на анализе интерференционной картины, образованной в параллельных пучках широкополосного излучения, один из которых взаимодействует с образцом. Для получения информации о спектрах амплитуд и фаз излучения выполняют полное (косинусное и синусное) Фурье-преобразование интерферограммы, полученной при изменении разности хода опорного и измерительного пучков.

Известен способ асимметричной дисперсионной Фурье-спектрометрии, включающий размещение образца в одном плече (измерительном) двухлучевого статического интерферометра, воздействие на образец перестраиваемым по частоте монохроматическим излучением, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования [3]. Основным недостатком известного способа является большая продолжительность и низкая точность измерений, что обусловлено необходимостью дискретной перестройки источника по частоте и многократного повторения процедуры измерений на каждой частоте излучения.

Наиболее близким по технической сущности к заявляемому является способ дисперсионной Фурье-спектрометрии в широкополосном излучении, включающий размещение в каждом из плеч двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча образца исследуемого вещества, пропускание через оба контейнера непрерывного широкополосного излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования [4]. Основным недостатком известного способа является низкая точность измерений, что обусловлено неоднозначностью по целому числу 2π при определении фазового набега Δφ излучения в образце исследуемого вещества и малостью длины взаимодействия излучения с веществом при ограничении Δφ величиной 2π.

Техническим результатом, на достижение которого направлено настоящее изобретение, является повышение точности измерений и расширение класса исследуемых веществ и образцов.

Технический результат достигается тем, что в известном способе дисперсионной Фурье-спектрометрии в широкополосном излучении, включающем размещение в каждом плече двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча прозрачного образца исследуемого вещества, пропускание через оба контейнера излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования, в контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n0, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n0)=λmin/a, где a - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения.

Повышение точности измерений заявляемым способом достигается в результате устранения неоднозначности по целому числу 2π и увеличения пути излучения в исследуемом веществе. Повышение точности становится возможным благодаря наличию в контейнерах веществ с близкими показателями преломления в пределах полосы частот излучения (это различие Δn не должно превышать λmin/a, где а - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения) и равенству расстояний, проходимых излучением в контейнерах. Действительно, в этом случае изменение разности фаз Δφ для составляющей излучения с данной длиной волны λ в интерферирующих пучках оказывается равным не Δφ=k0·(n-1)·a как в способе-прототипе (где k0=2π/λ; n - показатель преломления исследуемого вещества на данной λ), а-Δφ=k0·Δn·a. Но, поскольку в заявляемом способе Δn мало, то равенство Δφ=2π будет достигаться при а, значительно большем, по сравнению с прототипом. Таким образом, заявляемый способ позволяет увеличить длину взаимодействия излучения с исследуемым веществом, что обуславливает повышение точности измерения коэффициента его поглощения.

Расширение класса исследуемых веществ и образцов обеспечивается также благодаря размещению в контейнере опорного плеча интерферометра вещества с показателем преломления, близким к показателю преломления исследуемого вещества в полосе частот излучения, поскольку в этом случае расстояние а, проходимое излучением в исследуемом веществе при выполнении условия Δφ≤2π, становится в (n-1)/Δn раз больше, по сравнению с прототипом. Поэтому заявляемым способом можно исследовать не только тонкие, но и протяженные образцы (расширение класса исследуемых образцов), а также - и оптически более плотные материалы (расширение класса исследуемых веществ).

На фиг.1 приведена схема спектрометра, позволяющего реализовать заявляемый способ, где цифрами обозначены: 1 герметичный контейнер с прозрачными окнами, заполняемый исследуемым веществом; 2 герметичный контейнер с прозрачными окнами, заполняемый веществом с известной зависимостью его показателя преломления от частоты излучения; 3 источник широкополосного немонохроматического излучения; 4 светоделитель; 5 линия задержки, состоящая из неподвижного 5а и подвижного 5б уголковых отражателей, обеспечивает сканирование разности оптических путей интерферирующих пучков; 6 плоское зеркало, 7 плоское зеркало, размещенное в контейнере 1; 8 светоделитель, размещенный в контейнере 2 и сопряженный с зеркалом 7; 9 линия задержки, состоящая из неподвижного 9а и подвижного 9б уголковых отражателей, обеспечивает сохранность когерентности соответственных монохроматических компонент в интерферирующих пучках; 10 фотоприемное устройство (ФПУ); 11 блок обработки информации, способный выполнять полное Фурье-преобразование регистрируемой в ходе сканирования интерферограммы.

Способ осуществляется следующим образом. В контейнере 1 размещают прозрачный образец исследуемого вещества, а в контейнере 2 - эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с нормальной дисперсией и известной зависимостью показателя преломления n0 от частоты, который мало отличается от показателя преломления исследуемого вещества n в пределах полосы излучения. Коллимированное излучение источника 3 поступает на светоделитель 4 и разделяется им на два пучка - опорный и измерительный. Линия задержки 5, сканированием по заданному закону отражателя 5б, осуществляет заданное изменение оптической разности хода интерферирующих пучков. Прошедший через линию 5 пучок измерительного плеча интерферометра отражается зеркалом 6 и направляется на входное окно контейнера 1, в котором он взаимодействует с исследуемым веществом, отражается зеркалом 7 и, выйдя из контейнера 1 через его другое окно, падает на светоделитель 8. На противоположную сторону делителя 8 через окно контейнера 2 поступает прошедшее через линию 9 излучение из опорного плеча. Совмещенные делителем 8 пучки из обоих плеч выходят из контейнера 2 через его третье окно и направляются на вход ФПУ 10, регистрирующего интерференционную интенсивность излучения. Генерируемый устройством 10 электрический сигнал поступает в блок обработки информации 11.

До начала измерений отражатель 5б устанавливают в среднее (в пределах его хода) положение. Число N положений отражателя 5б, пропорциональное частотному разрешению спектрометра, выбирают исходя из требований к точности измерений. Кроме того, изменяя с помощью линии 9 разность оптических путей пучков, добиваются максимальной видности интерференционной картины.

Зарегистрировав в блоке 11 интерферограмму, представляющую собой совокупность значений интерференционного сигнала при N положениях отражателя 5б, выполняют полное Фурье-преобразование интерферограммы и получают фазовый и амплитудный спектры исследуемого вещества в диапазоне частот излучения источника 1. Для повышения соотношения "полезный сигнал/шум" такие измерения выполняют многократно, находят средние значения сигналов в точках отсчета, совокупность которых представляет собой усредненную интерферограмму, которая и подвергается полному Фурье-преобразованию. Кроме того, для дополнительного повышения отношения "полезный сигнал/шум" в процессе измерений может быть применена также известная методика фазовой модуляции интерференционного сигнала путем колебаний отражателя 5б, что позволяет реализовать селективную регистрацию электрического сигнала с выхода ФПУ 10 на частоте фазовой модуляции.

В качестве примера применения заявляемого способа рассмотрим возможность получения с помощью описанного выше прибора спектров n и k воды, находящейся при температуре 18°C, в диапазоне λ, от 0,4 мкм до 0,8 мкм. В качестве источника излучения со сплошным спектром выберем нить лампы накаливания при температуре 2000°C, снабженную соответствующим полосовым фильтром. Учитывая, что показатель преломления воды n при λ=0,4 мкм равен приблизительно 1,4 [5], в качестве эталонного тела, помещаемого в контейнер опорного плеча, выберем такую же воду, но находящуюся при температуре 60°C, и показатель преломления которой n0 меньше n на величину Δn≈1,5·10-4 [6]. Тогда расстояние а, проходимое излучением в образце, не должно превышать 2,7 мм, чтобы выполнить условие Δφ=k0·Δn·a≤2π (где k0 соответствует λ=0,4 мкм). В случае же применения способа-прототипа, когда контейнер в опорном плече заполнен воздухом, условие Δφ≤2π будет выполнено при a≤1 мкм, поскольку Δn в этом случае равно 0,4. Следовательно, расстояние, проходимое излучением в воде, при применении заявляемого способа, будет в 2700 раз больше, чем в прототипе. В соответствующее число раз уменьшится ошибка определения как n, так и k для воды в рабочем диапазоне длин волн излучения.

Таким образом, в результате увеличения расстояния, проходимого излучением в исследуемом веществе, и ликвидации неоднозначности по целому числу 2π, применение заявляемого способа позволяет как повысить точность измерений, так и расширить класс исследуемых веществ и образцов.

Источники информации

1. Золотарев В.М. Методы исследования материалов фотоники: элементы теории и техники. СПб: СПбГУ ИТМО, 2008. - 275 с.

2. Креницкий А.П. Проблемы измерения диэлектрических характеристик нано- и микроразмерных сред в терагерцевом диапазоне частот // Успехи современной радиоэлектроники, 2008, №9, с.30-35.

3. Егорова Л.В., Ермаков Д.С., Кувалкин Д.Г., Таганов O.K. Фурье-спектрометры статического типа // Оптико-механическая промышленность, 1992, №2, с.3-14.

4. Birch J.R., Parker T.J. Dispersive Fourier Transform Spectroscopy, Ch.3 in "Infrared and Millimeter Waves", v.2. Ed. by K.J.Button, Academic Press, N.Y. 1979, p.137-271 (прототип).

5. Золотарев В.М., Морозов В.Н., Смирнова Е.В. Оптические постоянные природных и технических сред. Справочник // Л.: Химия, 1984. - с.15.

6. Abbate G., Bernini U., Ragozzino E. and Somma F. The temperature dependence of the refractive index of water // J. Phys. D, 1978, v.11, p.1167-1172.

Похожие патенты RU2468344C1

название год авторы номер документа
ПОЛЯРИЗАЦИОННЫЙ ИНТЕРФЕРОМЕТР 2004
  • Калашников Евгений Валентинович
  • Рачкулик Светлана Николаевна
  • Михайлова Алла Геннадьевна
RU2275592C2
ИЗМЕРИТЕЛЬ ФАЗОВЫХ ШУМОВ УЗКОПОЛОСНЫХ ЛАЗЕРОВ, ОСНОВАННЫЙ НА СОСТОЯЩЕМ ИЗ РМ-ВОЛОКНА ИНТЕРФЕРОМЕТРЕ МАХА-ЦЕНДЕРА 2017
  • Пнев Алексей Борисович
  • Степанов Константин Викторович
  • Жирнов Андрей Андреевич
  • Нестеров Евгений Тарасович
  • Чернуцкий Антон Олегович
  • Борисова Алина Вадимовна
  • Шелестов Дмитрий Алексеевич
  • Кошелев Кирилл Игоревич
  • Карасик Валерий Ефимович
RU2664692C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАБЕГА ФАЗЫ МОНОХРОМАТИЧЕСКОЙ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИНФРАКРАСНОГО ДИАПАЗОНА 2012
  • Кирьянов Анатолий Павлович
  • Князев Борис Александрович
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2491522C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИНФРАКРАСНОЙ ОБЛАСТИ СПЕКТРА 2008
  • Жижин Герман Николаевич
  • Кирьянов Анатолий Павлович
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2372591C1
Способ определения частоты и амплитуды модуляции фазы волнового фронта, создаваемого колебаниями мембраны клетки 2020
  • Левин Геннадий Генрихович
RU2743973C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ОДНОРОДНОГО НАНОСЛОЯ В ИНФРАКРАСНОМ ИЗЛУЧЕНИИ 2012
  • Никитин Алексей Константинович
  • Кирьянов Анатолий Павлович
  • Жижин Герман Николаевич
  • Чудинова Галина Константиновна
RU2470257C1
ИНТЕРФЕРЕНЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ В ОБРАЗЦАХ С ГРАДИЕНТОМ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ 1994
  • Герасимова Людмила Андриевна
RU2083969C1
Устройство измерения распределения показателя преломления прозрачных образцов 2019
  • Минаев Владимир Леонидович
  • Левин Геннадий Генрихович
  • Иванов Алексей Дмитриевич
RU2727783C1
ДВУХЛУЧЕВОЙ ИНТЕРФЕРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ИЗОТРОПНЫХ И АНИЗОТРОПНЫХ МАТЕРИАЛОВ 1991
  • Андрущак Анатолий Степанович[Ua]
RU2102700C1
Интерферометр для определения показателя преломления инфракрасной поверхностной электромагнитной волны 2017
  • Никитин Алексей Константинович
  • Князев Борис Александрович
  • Герасимов Василий Валерьевич
  • Хасанов Илдус Шевкетович
RU2653590C1

Реферат патента 2012 года СПОСОБ ДИСПЕРСИОННОЙ ФУРЬЕ-СПЕКТРОМЕТРИИ В НЕПРЕРЫВНОМ ШИРОКОПОЛОСНОМ ИЗЛУЧЕНИИ

Изобретение относится к оптическим методам исследования материалов, а именно к определению спектров комплексной диэлектрической проницаемости или оптических постоянных. Способ заключается в размещении в каждом плече двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, в одном из которых в измерительном плече размещают прозрачный образец исследуемого вещества. В контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n0, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n0)=λmin/a, где а - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения. Пропускают через оба контейнера излучение и дискретно регистрируют интерферограмму, формируемую на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону. Обрабатывают полученную интерферограмму с помощью полного Фурье-преобразования. Изобретение позволяет повысить точность измерений и расширить класс исследуемых веществ. 1 ил.

Формула изобретения RU 2 468 344 C1

Способ дисперсионной Фурье-спектрометрии в непрерывном широкополосном излучении, включающий размещение в измерительном и опорном плечах двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча прозрачного образца исследуемого вещества, пропускание через оба контейнера излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования, отличающийся тем, что в контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n0, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n0)=λmin/a, где а - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения.

Документы, цитированные в отчете о поиске Патент 2012 года RU2468344C1

BIRCH J.R., PARKER T.J
Infrared and Millimeter Waves, v.2, ch.3, Dispersive Fourier Transform Spectrometry, Academic Press, N.Y., 1979, p.180-208
Егорова Л.В
и др
Фурье-спектрометры статического типа
- Оптико-механическая промышленность, 1992, №2, с.3-14
US 7206073 B2, 17.04.2007
ВЫДВИЖНОЙ МЕБЕЛЬНЫЙ ЯЩИК 0
  • В. Ф. Костенко, А. В. Половь А. Я. Пав Я. В. Голованов
SU267037A1
СПОСОБЫ ДВУХЛУЧЕВОЙ ИК-ФУРЬЕ СПЕКТРОСКОПИИ И УСТРОЙСТВА ДЛЯ ОБНАРУЖЕНИЯ ИССЛЕДУЕМОГО ВЕЩЕСТВА В ПРОБАХ С НИЗКОЙ ПРОНИЦАЕМОСТЬЮ 2001
  • Дебречени Мартин П.(Us)
  • О`Нил Майкл П.
RU2265827C2
Фурье-спектрометр 1988
  • Васильев Валерий Анатольевич
  • Копылов Алексей Алексеевич
  • Холодилов Андрей Николаевич
SU1622775A1
Конвейерная линия для изготовления крупноразмерных железобетонных изделий "комбинат" 1973
  • Собенников Михаил Никонович
  • Зозуля Иван Николаевич
SU504654A1

RU 2 468 344 C1

Авторы

Кирьянов Анатолий Павлович

Никитин Алексей Константинович

Жижин Герман Николаевич

Головцов Николай Иванович

Даты

2012-11-27Публикация

2011-06-30Подача