УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ Российский патент 2013 года по МПК G01B7/16 G01L9/08 

Описание патента на изобретение RU2472107C1

Изобретение относится к измерительной технике, предназначено для измерения механических величин - давления, деформаций, перемещений и может быть использовано в средствах автоматизации контроля технологических процессов сложных технических систем топливоэнергетического комплекса, АЭС, автомобильного и железнодорожного транспорта и других отраслях промышленности.

Известен датчик механических величин, содержащий устройство на поверхностных акустических волнах, выполненное в виде резонатора с входным и выходным встречно-штыревыми преобразователями, заключенное в герметичный корпус с осушенной контролируемой средой и через гермовыводы входной и выходной встречно-штыревой преобразователя подключенное к управляющему органу, выполненному в виде микропереключателя, связанному через регулирующий элемент с преобразователем "механическая величина-перемещение" в виде сильфона.

Патент Российской Федерации №2247954, МПК: G01L 9/08, H03H 9/145, 2005 г.

Известно устройство для преобразования неэлектрической величины в электрический сигнал, содержащее источник тока, блок коррекции, блок преобразования импеданса в выходной сигнал, выход которого соединен с нагрузочным резистором, отличающееся тем, что оно снабжено стабилизатором питающих и опорных напряжений, образующих с источником тока блок питания, масштабирующим усилителем, дифференциальные входы которого соединены с измерительной диагональю измерительного моста, независимым регулируемым и масштабируемым каналом коррекции температурной погрешности "нуля", состоящим из суммирующего блока, вход которого соединен с выходом масштабирующего усилителя и блока коррекции температурной погрешности "нуля", коммутатором пределов измерения, независимым регулируемым и масштабируемым каналом коррекции температурной погрешности "диапазона", состоящим из перемножающего моста, выход которого соединен с входом блока преобразования импеданса в выходной сигнал, и блока коррекции температурной погрешности "диапазона", выход которого подключен ко второму входу блока преобразования импеданса, коммутатор пределов измерения включен между выходом блока коррекции и входом перемножающего моста, блок коррекции выполнен в виде блока коррекции статической нелинейности измерительного моста, вход которого подключен к выходу суммирующего блока, выход опорного напряжения блока питания соединен с входами опорного напряжения блоков коррекции температурной погрешности "нуля" и "диапазонов", суммирующего блока, блока коррекции и блока преобразования импеданса, источник тока блока питания подключен к информационному входу блока коррекции температурной погрешности "нуля" и к диагонали питания измерительного моста, выполненного температурно-зависимым, второй вход перемножающего моста подключен к информационному входу блока коррекции температурной погрешности "диапазона", перемножающий мост выполнен в виде резистивного моста с четырьмя плечами, по крайней мере, в одном из плеч которого резистор выполнен температурно-зависимым, и дифференциального усилителя, входами включенного в измерительную диагональ резистивного моста, выход усилителя является вторым выходом перемножающего моста, а диагональ питания резистивного моста подключена между входом и первым выходом перемножающего моста.

Патент Российской Федерации №2087857 МПК: G01B 7/16, 1997 г. Прототип.

Недостатком прототипа является то, что датчики давления, изготовленные в соответствии с приведенным техническим решением, имеют сравнительно короткий межповерочный интервал, как следствие, дополнительные затраты на обслуживание, демонтаж, поверку/калибровку, монтаж, обусловленные отсутствием метрологического самоконтроля.

Задачей изобретения является создание датчика давления с функцией метрологического самоконтроля.

Техническим результатом изобретения является компенсация погрешности, вызванной долговременной нестабильностью первичного преобразователя и погрешностей, вызванных механическими перегрузками датчика, метрологический самоконтроль и увеличение межповерочного интервала.

Технический результат достигается тем, что в датчик давления, содержащий первичный преобразователь, источник тока для питания первичного преобразователя, датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления, датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления, нормирующий усилитель, устройство компенсации аддитивной составляющей температурной погрешности сигнала давления, устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления и устройство компенсации основной погрешности, введен блок метрологического контроля и диагностики, содержащий сумматор сигналов, цифровой потенциометр с энергонезависимой памятью, микропроцессор и аналого-цифровой преобразователь, причем выход цифрового потенциометра с энергонезависимой памятью соединен с входом сумматора сигналов, второй вход сумматора сигналов соединен с выходом потенциометра оперативной регулировки нуля, а выход сумматора сигналов соединен с входом устройства компенсации аддитивной составляющей температурной погрешности сигнала давления, выход устройства компенсации основной погрешности и переключения пределов измерений соединен с входом аналого-цифрового преобразователя, соединенного с микропроцессором, выход микропроцессора соединен с входом цифрового потенциометра блока метрологического контроля и самодиагностики.

Изобретение поясняется на фигурах 1 и 2.

На фиг.1 приведена структурная схема датчика, где: 1 - источник тока питания первичного преобразователя; 2 - первичный преобразователь; 3 - датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления; 4 - датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления; 5 - нормирующий усилитель; 6 - устройство компенсации аддитивной составляющей температурной погрешности сигнала давления; 7 - устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления; 8 - устройство компенсации основной погрешности и переключения пределов измерения; 9 - устройство сопряжения датчика с линией электропитания; 10 - блок метрологического контроля и самодиагностики; 11 - потенциометр оперативной регулировки нуля.

На фиг.2 приведена структурная схема блока метрологического контроля и самодиагностики 10, где: 12 - сумматор сигналов; 13 - цифровой потенциометр с энергонезависимой памятью; 14 - микропроцессор; 15 - аналого-цифровой преобразователь; 16 - формирователь команды метрологического самоконтроля; VSS - отрицательный полюс питания прибора.

Для использования датчика в рабочем режиме его необходимо предварительно настроить.

Движок цифрового потенциометра с энергонезависимой памятью 13 блока метрологического контроля и самодиагностики 10 устанавливают в среднее положение. Производят настройку датчика по параметрам компенсации основной погрешности и компенсации температурных погрешностей датчика. Настраивают блок метрологического контроля и самодиагностики 10. Вход датчика соединяют с атмосферой. За опорное значение параметра, характеризующего критическую составляющую погрешности, принимают разность потенциалов между выходом устройства компенсации основной погрешности и переключения пределов измерения 8 и цепью VSS датчика. С помощью аналого-цифрового преобразователя 15 указанную разность потенциалов преобразуют в цифровой код и записывают полученное значение вместе с предельно допустимыми значениями основной допускаемой погрешности, установленными для данного датчика, в память микропроцессора 14 с атрибутом «только для чтения».

Устройство работает следующим образом. При воздействии давления происходит деформация первичного преобразователя 2, что приводит к изменению номиналов плеч резистивного моста или изменению номиналов емкостей ячейки первичного преобразователя 2.

При изменении номиналов плеч моста (резистивного или емкостного) на выходах измерительной диагонали появляется разность потенциалов, которую усиливает нормирующий усилитель 5. Сигнал через устройство компенсации аддитивной составляющей температурной погрешности сигнала давления 6 и устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления 7 поступает на вход устройства компенсации основной погрешности и переключения пределов измерения 8, где линеаризуется и преобразуется во входной сигнал для устройства сопряжения датчика с линией электропитания 9.

Сигнал с датчика температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления 3 с независимыми весовыми коэффициентами для температуры ниже и выше температуры калибровки поступает на вход устройства компенсации аддитивной составляющей температурной погрешности сигнала давления 6. Сигнал с датчика температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления 4 с независимыми весовыми коэффициентами для температуры ниже и выше температуры калибровки поступает на вход устройства компенсации мультипликативной составляющей температурной погрешности сигнала давления 7. Происходит постоянная адаптация сигнала первичного преобразователя 2 к воздействию температуры окружающей среды.

Блок метрологического контроля и самодиагностики 10 работает следующим образом. При подаче на вход датчика давления, соответствующего нулевому значению измеряемого параметра (для большинства типов датчиков атмосферное давление), и поступлении команды от формирователя команды метрологического самоконтроля и диагностики 16 сигнал с выхода устройства компенсации основной погрешности и переключения пределов измерения 8 преобразуется в цифровой код.

Из результата преобразования с выхода устройства компенсации основной погрешности и переключения пределов измерения 8 микропроцессор 14 вычитает значение, хранящееся в памяти коэффициентов и калибровочных значений микропроцессора 14, полученное в процессе изготовления и калибровки прибора на предприятии-изготовителе и, в случае, если эта разность превышает значение предела основной допускаемой погрешности, процессор выдает сигнал управления цифровым потенциометром для компенсации ошибки измерений, вызванной долговременной нестабильностью первичного преобразователя 2, или механическими изменениями, вызванными перегрузками первичного преобразователя 2. Микропроцессор 14 производит запись нового значения кода управления в энергонезависимую память цифрового потенциометра 13 блока метрологического контроля и самодиагностики 10.

То есть путем оценки отклонения параметра, характеризующего критическую составляющую погрешности, от принятого опорного значения этого параметра датчик осуществляет метрологический диагностический самоконтроль и автоматическую коррекцию погрешности, появившейся в результате воздействия влияющих величин и/или старения компонентов. При разности кодов в пределах числового значения основной допускаемой погрешности микропроцессор 14 вырабатывает команду на сохранение текущего состояния цифрового потенциометра.

Похожие патенты RU2472107C1

название год авторы номер документа
ДАТЧИК ДАВЛЕНИЯ 2013
  • Коноводов Юрий Анатольевич
  • Лурье Геннадий Ирзайлевич
  • Митюнин Александр Владимирович
RU2523754C1
ИНТЕЛЛЕКТУАЛЬНЫЙ СЧЁТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ СТАТИЧЕСКИЙ 2018
  • Семененко Борис Яковлевич
RU2695451C1
Магнитометр с термокомпенсацией сигнала датчика магнитного поля 2019
  • Цыбин Юрий Николаевич
RU2707586C1
ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ 1995
  • Бало А.Г.
  • Грудцинов Г.М.
  • Ессяк С.П.
  • Осипова С.Г.
  • Печерских А.П.
RU2082129C1
Устройство для измерения температуры 1977
  • Мильченко Виктор Юрьевич
  • Кочан Владимир Владимирович
  • Кочан Владимир Алексеевич
SU666444A1
ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО 2011
  • Петроченко Юрий Николаевич
  • Клементьев Игорь Игоревич
  • Стерлин Андрей Яковлевич
  • Синдинский Валерий Владимирович
RU2469341C1
ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО 2011
  • Быков Владимир Иванович
  • Петроченко Юрий Николаевич
  • Стерлин Андрей Яковлевич
RU2469339C1
СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ ВЕРТОЛЕТА 2011
  • Порунов Александр Азикович
  • Бердников Алексей Владимирович
  • Масленникова Юлия Сергеевна
  • Солдаткин Владимир Михайлович
  • Порунов Николай Александрович
  • Солдаткин Вячеслав Владимирович
  • Макаров Николай Николаевич
RU2518871C2
СПОСОБ ИЗМЕРЕНИЯ ДАВЛЕНИЯ И КАЛИБРОВКИ НА ОСНОВЕ ТЕНЗОМОСТОВОГО ИНТЕГРАЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ 2015
  • Артемьева Ольга Ивановна
  • Моршнев Виктор Владимирович
  • Стахин Вениамин Георгиевич
RU2585486C1
Тензометрическое устройство 1990
  • Пащенко Валентина Васильевна
  • Маланин Владимир Павлович
  • Фильчиков Валерий Андреевич
  • Исаков Сергей Алексеевич
SU1758414A1

Иллюстрации к изобретению RU 2 472 107 C1

Реферат патента 2013 года УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ

Изобретение относится к измерительной технике, предназначено для измерения механических величин и может быть использовано в средствах автоматизации контроля технологических процессов. Устройство содержит первичный преобразователь, источник питания первичного преобразователя, датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления, датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления, нормирующий усилитель, устройство компенсации аддитивной составляющей температурной погрешности сигнала давления, устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления, устройство компенсации основной погрешности. Также в него введен блок метрологического контроля и диагностики, содержащий сумматор сигналов, цифровой потенциометр с энергонезависимой памятью, микропроцессор и аналого-цифровой преобразователь. При этом выход цифрового потенциометра с энергонезависимой памятью соединен с входом сумматора сигналов, второй вход сумматора сигналов соединен с выходом потенциометра оперативной регулировки нуля, а выход сумматора сигналов соединен с входом устройства компенсации аддитивной составляющей температурной погрешности сигнала давления, выход устройства компенсации основной погрешности и переключения пределов измерений соединен с входом аналого-цифрового преобразователя, соединенного с микропроцессором, выход микропроцессора соединен с входом цифрового потенциометра блока метрологического контроля и самодиагностики. Технический результат заключается в компенсации погрешности, вызванной долговременной нестабильностью первичного преобразователя и погрешностей, вызванных механическими перегрузками датчика, метрологический самоконтроль и увеличение межповерочного интервала. 2 ил.

Формула изобретения RU 2 472 107 C1

Датчик давления, содержащий первичный преобразователь, источник питания первичного преобразователя, датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления, датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления, нормирующий усилитель, устройство компенсации аддитивной составляющей температурной погрешности сигнала давления, устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления, устройство компенсации основной погрешности, отличающийся тем, что введен блок метрологического контроля и диагностики, содержащий сумматор сигналов, цифровой потенциометр с энергонезависимой памятью, микропроцессор и аналого-цифровой преобразователь, причем выход цифрового потенциометра с энергонезависимой памятью соединен с входом сумматора сигналов, второй вход сумматора сигналов соединен с выходом потенциометра оперативной регулировки нуля, а выход сумматора сигналов соединен с входом устройства компенсации аддитивной составляющей температурной погрешности сигнала давления, выход устройства компенсации основной погрешности и переключения пределов измерений соединен с входом аналого-цифрового преобразователя, соединенного с микропроцессором, выход микропроцессора соединен с входом цифрового потенциометра блока метрологического контроля и самодиагностики.

Документы, цитированные в отчете о поиске Патент 2013 года RU2472107C1

УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ 1995
  • Коломиец Л.Н.
  • Митюнин А.В.
RU2087857C1
ДАТЧИК МЕХАНИЧЕСКИХ ВЕЛИЧИН (ВАРИАНТЫ) 2002
  • Киселев В.К.
  • Князев И.А.
  • Труфанова Г.В.
RU2247954C2
Пьезорезонансный датчик давления 1986
  • Варданян Владимир Рубенович
  • Григорян Эдвин Николаевич
  • Варданян Вардан Владимирович
  • Азоян Микаэл Саркисович
  • Варданян Норайр Владимирович
SU1326917A1

RU 2 472 107 C1

Авторы

Клочихин Владимир Александрович

Лурье Геннадий Израйлевич

Митюнин Александр Владимирович

Даты

2013-01-10Публикация

2011-09-29Подача