Изобретение предназначено для оценки линейных температурных деформаций образцов дорожно-строительных материалов с целью выбора из них материалов, соответствующих установленным требованиям.
Известно (Печеный Б.Г. «Битумы и битумные композиции». М.: Химия, 1990 г.), что долговечность асфальтобетонных дорожных покрытий зависит не только от величины напряжений в них, вызванных действием веса транспортных средств, но и от величины напряжений, обусловленных температурными деформациями в эксплуатационном диапазоне температур от +60°С до -60°С. Отмечено, что особенно опасны температурные деформации дорожных покрытий в отрицательном диапазоне температур. Поэтому для оценки температурных напряжений в асфальтобетонных покрытиях необходимо оценивать линейные температурные деформации дорожно-строительных материалов, включая асфальтобетон и материалы основания дорожного покрытия.
Известен способ оценки линейного теплового расширения асфальтобетона (Горелышев Н.В. «Асфальтобетон и другие битумоминеральные материалы». М.: Можайск - Терра, 1995 г.). Способ заключается в том, что испытуемый образец асфальтобетона устанавливают в приспособление с торцевыми упорами на стержни из инвара - сплава железа с никелем, обладающего незначительным по сравнению с асфальтобетоном тепловым расширением. Для повышения чувствительности измерения тепловых деформаций опытный образец изготавливают из 3-4 склеенных на торцах битумом стандартных образцов асфальтобетона диаметром и длиной от 50 до 100 мм. Приспособление с образцом асфальтобетона помещают в морозильную камеру и устанавливают в ней заданную температуру. Выдерживают приспособление с образцом асфальтобетона в морозильной камере в течение 2-х часов, затем вынимают их из морозильной камеры, вставляют индикаторы в отверстия торцевых упоров и фиксируют их показания. После этого выдерживают приспособление с образцом асфальтобетона в помещении при комнатной температуре в течение 2-х часов, пока температура образца сравняется с температурой воздуха в помещении, и фиксируют показания индикаторов и температуру воздуха в помещении. Измеряют длину образца линейкой с ценой деления 1 мм. Оценивают относительную величину линейного теплового расширения асфальтобетона «α» по формуле:
α=(L2-L1)/L2·ΔT,
где L1 - длина охлажденного образца;
L2 - длина оттаявшего образца;
ΔТ - алгебраическая разность температур охлажденного и оттаявшего образца.
Сравнивают относительные величины линейного теплового расширения образцов различных вариантов составов асфальтобетона и выбирают из них составы, соответствующие установленным требованиям.
Недостатками известного способа является невысокая точность оценки линейной температурной деформации асфальтобетона из-за наличия стыков в составных образцах, так как слой битума в стыках имеет значительно большее тепловое расширение, чем сам асфальтобетон. При этом вынужденно используют склеенные между собой составные образцы из-за того, что изготовление цилиндрических образцов длиной от 150 мм до 400 мм представляет сложную и не решенную на сегодняшний день задачу из-за необходимости при изготовлении такого образца обеспечить его равномерное уплотнение по всей длине. Также невысокая точность вызвана тем, что не учитывают температурную деформацию инварных стержней, которая может составлять 10-20% от температурной деформации испытуемого образца. Кроме того, известным способом невозможно определять линейные температурные деформации образцов сыпучих дорожно-строительных материалов (песок, щебень и т.д.), моделирующих работу этих материалов в конструктивном слое дорожной одежды.
Также известен способ оценки объемных температурных деформаций образцов бетонов с помощью прибора - дифференциального дилатометра («Дилатометр объемный дифференциальный ДОД 100.00.000, Техническое описание и инструкция по эксплуатации ДОД 100.00.000 ТО». М.: ЦМИПКС, 1994. - 17 стр.; Дикун А.Д. и др. «Развитие отечественного дилатометрического метода прогнозирования свойств бетона», Строительные материалы, 2004, №4, с.52-56).
Способ оценки объемных температурных деформаций образцов бетонов с помощью дилатометра, принимаемый нами за прототип, основан на преобразовании объемных деформаций помещенного в рабочую жидкость испытуемого образца исследуемого материала в линейные перемещения уровня этой жидкости и включает в себя следующие операции. Испытуемый образец бетона насыщают водой стандартным способом по ГОСТ 10060.0-95. Для этого образец выдерживают в воде при атмосферном давлении в течение 4 суток. Затем образец помещают в рабочую камеру дилатометра. Одновременно в опорную камеру дилатометра помещают эталонный стандартный образец из алюминия, имеющий размеры и форму испытуемого образца. Свободное от образцов пространство рабочей и опорной камер заполняют рабочей жидкостью - керосином, который не вступает в химическое взаимодействие с бетоном и не загустевает при отрицательных температурах до -20°С и ниже. После этого обе камеры герметизируют и устанавливают в морозильную камеру, где замораживают со скоростью ~0,3°С в минуту до -20°С. При этом непрерывно в течение не менее 2,5 часов измеряют разность объемных деформаций испытуемого образца и эталонного стандартного путем измерения изменения объема керосина в камерах дилатометра датчиками уровня. При этом измеряют не абсолютное изменение объема испытуемого образца при охлаждении, а относительное изменение его объема по отношению к объему эталонного стандартного образца.
Сравнивают относительные величины объемных температурных деформаций образцов различных вариантов составов бетона и выбирают из них составы, соответствующие установленным требованиям.
Способ-прототип не содержит сложных операций и не требует для его осуществления сложного и громоздкого оборудования. Поэтому достоинством комплекта-прототипа оборудования для осуществления способа-прототипа являются простота и компактность.
Комплект-прототип оборудования для осуществления способа-прототипа включает в себя устройство для насыщения испытываемого образца водой, морозильную камеру и как минимум две помещенные в нее заполненные рабочей жидкостью - керосином камеры дилатометра (рабочую, в которую помещен испытуемый образец, и опорную, в которую помещен эталонный образец). Рабочая и опорная камеры выполнены с возможностью их герметизации. Также в комплект оборудования входят блок датчиков уровня для измерения изменений объема керосина в камерах дилатометра, многоканальный контроллер для ввода измеряемой информации в компьютер через последовательный интерфейс и собственно компьютер. Работа комплекта-прототипа оборудования для осуществления способа оценки линейных тепловых расширений образцов дорожно-строительных материалов описана выше.
Недостатком комплекта-прототипа оборудования для осуществления способа-прототипа является его узкофункциональное назначение - комплект оборудования предназначен только для определения относительногого изменения объема образцов дорожно-строительных материалов по отношению к объему эталонного стандартного образца. При этом комплект оборудования обеспечивает возможность насыщения испытываемого образца только водой, что не соответствует реальным условиям эксплуатации покрытий дорог.
В целом способ-прототип и комплект-прототип оборудования для его осуществления обладают рядом недостатков, Среди них:
- невозможность непосредственного измерения ни линейной и ни объемной температурных деформаций испытуемого образца,
- невозможность испытания образцов асфальтобетона, так как керосин растворяет битум в асфальтобетоне,
- невозможность испытания образцов рыхлых дорожно-строительных материалов, моделирующих слой такого материала в конструкции дороги, так как по этому способу можно измерить объемные температурные деформации только отдельных зерен песка или щебня, но не деформацию их совокупности, включающей межзерновые пустоты.
Также использование при насыщении образца жидкостью только чистой воды не отражает реальных условий эксплуатации покрытий дорог, так как во всем мире для борьбы с оледенением асфальтобетонных покрытий их повсеместно обрабатывают водными растворами незамерзающих противогололедных материалов. В результате не обеспечивается достоверность результатов испытаний реальным условиям эксплуатации покрытий дорог.
Целью создания заявляемого способа оценки линейных температурных деформаций дорожно-строительных материалов и заявляемого комплекта оборудования для осуществления этого способа являлось создание способа, позволяющего путем непосредственного измерения абсолютной величины объемной температурной деформации испытуемого образца, в том числе образцов асфальтобетона и образцов рыхлых дорожно-строительных материалов, моделирующих слой такого материала в конструкции дороги, по известным зависимостям оценивать линейные температурные деформации дорожно-строительных материалов, а также создания соответствующего комплекта оборудования для осуществления заявляемого способа.
Техническая задача заключалась в расширении функциональных возможностей способа-прототипа и комплекта-прототипа оборудования, обеспечивающих высокую степень достоверности измерения абсолютной величины объемной температурной деформации испытуемого образца для оценки его линейной температурной деформации, в том числе образцов асфальтобетона и образцов рыхлых дорожно-строительных материалов, в диапазоне отрицательных (до -60°С) и положительных (до +60°С) температур.
Поставленная задача решена путем создания заявляемого способа оценки линейных температурных деформаций дорожно-строительных материалов, в соответствии с которым испытания проводят в диапазоне отрицательных (до -60°С) и положительных (до +60°С) температур. При испытаниях при положительных температурах испытуемый образец дорожно-строительных материалов насыщают водой стандартным способом по ГОСТ 10060.0-95. Для этого образец выдерживают в воде при атмосферном давлении в течение 4 суток. При испытаниях при отрицательных температурах испытуемый образец дорожно-строительных материалов насыщают таким же образом специальной жидкостью, состав которой моделирует водный раствор незамерзающих противогололедных материалов, используемых в реальных условиях эксплуатации асфальтобетонных покрытий дорог (например, раствором хлористого натрия или кальция). Насыщение испытуемого образца дорожно-строительных материалов, содержащих битум или органическое вяжущее на основе битума, можно проводить под вакуумом в вакуумной установке (например, типа УВ-ФН) по ГОСТ 12801-98. Затем образец помещают в рабочую камеру дилатометра. При этом опорная камера дилатометра может использоваться как вторая рабочая для размещения в ней второго испытуемого образца для повышения производительности испытаний. До размещения в камеру образца рыхлых дорожно-строительных материалов его помещают сначала в герметичный чехол, например, из латекса. Свободное от образца пространство камеры дилатометра заполняют рабочей жидкостью, в качестве которой используют полиметилсилоксановую жидкость (например, ПМС-5 или ПМС-50 по ГОСТ 13032). Полиметилсилоксановые жидкости не застывают при температурах до -60°С и ниже, а также имеют температуру вспышки выше 120°С. Эти жидкости не растворяют битум и полимерно-битумные вяжущие в асфальтобетоне, а также не растворяют латексные чехлы для рыхлых дорожно-строительных материалов. Они пригодны также для испытаний материалов на основе минеральных вяжущих (цементобетона и т.п.). В результате применения полиметилсилоксановых жидкостей становится возможным проводить испытания практически любых дорожно-строительных материалов во всем диапазоне отрицательных и положительных температур, характерных для эксплуатации дорог. После заполнения камеры дилатометра рабочей жидкостью эту камеру герметизируют и устанавливают в термокамеру, где ее замораживают или нагревают со скоростью ~0,3°С в минуту до установленной температуры в диапазоне соответственно до -60°С или до +60°С. При этом непрерывно измеряют изменения объема рабочей полиметилсилоксановой жидкости в камере дилатометра датчиком уровня, которое соответствует абсолютному изменению объема испытуемого образца «ΔV» при его охлаждении или нагревании в установленном диапазоне изменения температуры «ΔT».
Относительную величину линейной температурной деформации испытуемого образца «α» оценивают по известной формуле (Жилко В.В., Лавриненко А.В., Маркович Л.Г. Физика. Учеб. пособие, 2-е изд. - Минск: Народное образование, 2004. - 382 с.):
α=ΔV/(3ХΔТ)
Затем сравнивают относительные величины линейных температурных деформаций образцов различных вариантов составов дорожно-строительных покрытий и выбирают из них составы, соответствующие установленным требованиям.
Поставленная задача также решена путем создания заявляемого комплекта оборудования для осуществления заявляемого способа оценки линейных температурных деформаций дорожно-строительных материалов. В состав комплекта входят устройство для насыщения испытуемого образца водой или жидкостью, состав которой моделирует состав жидкости в реальных условиях эксплуатации асфальтобетонных покрытий, например вакуумной установки типа УВ-ФН, а также, по крайней мере, одна камера дилатометра для помещения в нее испытуемого образца, соединенная с датчиком уровня залитой в эту камеру полиметилсилоксановой жидкости (например, ПМС-5 или ПМС-50 по ГОСТ 13032). Также в комплект оборудования включены герметичные чехлы для размещения в них рыхлых дорожно-строительных материалов и термокамера с устройством регулирования температуры. При испытании при отрицательных температурах в качестве термокамеры может использоваться морозильная камера с устройством регулирования температуры в ней. Датчики уровня залитой в камеру дилатометра рабочей жидкости и устройство регулирования температуры термокамеры могут быть подключены через контроллер к компьютеру.
Технический результат, получаемый в результате решения поставленной выше технической задачи, заключается в расширении функциональных возможностей способа-прототипа и комплекта-прототипа оборудования, обеспечивающих высокую степень достоверности измерения абсолютной величины объемной температурной деформации испытуемого образца для оценки на ее основе его линейной температурной деформации, в том числе образцов асфальтобетона и образцов рыхлых дорожно-строительных материалов, в диапазоне отрицательных (до -60°С) и положительных (до +60°С) температур.
Реализация заявляемого способа оценки линейных температурных деформаций дорожно-строительных материалов с использованием заявляемого комплекта оборудования для осуществления этого способа ввиду их простоты не вызывает затруднений. В настоящее время закончены подготовительные работы для проведения испытаний и уже получены результаты, подтверждающие работоспособность заявляемых способа с использованием заявляемого комплекта оборудования для осуществления этого способа с получением заявленного технического результата. Применение заявляемого способа с использованием заявляемого комплекта оборудования для осуществления способа позволит еще на этапе проектирования с высокой степенью достоверности оценивать линейные температурные деформации различных составов дорожно-строительных материалов и выбирать из них составы, соответствующие установленным требованиям. В результате обеспечивается надлежащее качество и долговечность дорожных покрытий, а также повышается безопасность движения на них.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЦЕНКИ УСТОЙЧИВОСТИ ОБРАЗЦОВ АСФАЛЬТОБЕТОНА К ИЗНОСУ ШИПОВАННЫМИ ШИНАМИ И КОМПЛЕКТ ОБОРУДОВАНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2465389C2 |
Способы и стенд для измерения деформации гранул нанопористых материалов, стимулированной адсорбцией или температурой дилатометрическим методом | 2021 |
|
RU2766188C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ ПОКРЫТИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2016 |
|
RU2647546C1 |
СПОСОБ ОЦЕНКИ УСТОЙЧИВОСТИ ИСПЫТУЕМЫХ ОБРАЗЦОВ ДОРОЖНЫХ ПОКРЫТИЙ ПО ОТНОШЕНИЮ К ИХ ИЗНОСУ ПОД ВОЗДЕЙСТВИЕМ АВТОМОБИЛЬНЫХ ОШИПОВАННЫХ ШИН И ИСПЫТАТЕЛЬНЫЙ СТЕНД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2021 |
|
RU2781863C1 |
СПОСОБ ОЦЕНКИ УСТОЙЧИВОСТИ ИСПЫТУЕМЫХ ОБРАЗЦОВ ДОРОЖНЫХ ПОКРЫТИЙ ПО ОТНОШЕНИЮ К ИХ ИЗНОСУ ПОД ВОЗДЕЙСТВИЕМ АВТОМОБИЛЬНЫХ ОШИПОВАННЫХ ШИН И ИСПЫТАТЕЛЬНЫЙ СТЕНД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2021 |
|
RU2794503C1 |
Устройство для испытания дорожного покрытия на износ ошипованными шинами, секторный элемент кольца дорожного покрытия для этого устройства и способ испытания дорожного покрытия на износ ошипованными шинами на этом устройстве | 2019 |
|
RU2706387C1 |
СПОСОБ ОЦЕНКИ УСТАЛОСТИ АСФАЛЬТОБЕТОНА ПРИ ЦИКЛИЧЕСКИХ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЯХ | 2011 |
|
RU2483290C2 |
ДИЛАТОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ БЕТОНА | 2006 |
|
RU2340887C2 |
СПОСОБ ОЦЕНКИ УСТАЛОСТИ АСФАЛЬТОБЕТОНА ПРИ ЦИКЛИЧЕСКИХ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЯХ | 2005 |
|
RU2299417C2 |
Способ определения морозостойкости строительных материалов | 1977 |
|
SU734569A1 |
Изобретение предназначено для оценки линейных температурных деформаций образцов дорожно-строительных материалов с целью выбора из них материалов, соответствующих установленным требованиям. Способ оценки линейных температурных деформаций дорожно-строительных материалов включает в себя изготовление испытуемого образца из дорожно-строительных материалов. Образец насыщают жидкостью, моделирующей реальные условия эксплуатации дорожных покрытий в соответствующее время года, и помещают в рабочую камеру дилатометра. Камеру заполняют рабочей жидкостью, герметизируют и устанавливают в термокамеру, в которой ее замораживают или нагревают с установленной скоростью до установленной температуры в диапазоне соответственно до -60°С или до +60°С. При этом измеряют изменения объема рабочей жидкости в камере дилатометра датчиком уровня и по изменению этого объема оценивают величину линейной температурной деформации испытуемого образца. Комплект оборудования для осуществления способа включает в себя устройство для насыщения испытуемого образца жидкостью, а также, по крайней мере, одну камеру дилатометра для помещения в нее испытуемого образца, соединенную с датчиком уровня залитой в эту камеру полиметилсилоксановой жидкости, и термокамеру с устройством регулирования температуры. Применение заявляемого способа с использованием заявляемого комплекта оборудования для осуществления способа позволит еще на этапе проектирования с высокой степенью достоверности оценивать линейные температурные деформации различных составов дорожно-строительных материалов и выбирать из них составы, соответствующие установленным требованиям. В результате обеспечивается надлежащее качество и долговечность дорожных покрытий, а также повышается безопасность движения на них. 2 н. и 6 з.п. ф-лы.
1. Способ оценки линейных температурных деформаций дорожно-строительных материалов, в соответствии с которым изготавливают испытуемый образец из дорожно-строительных материалов, насыщают его жидкостью и помещают в рабочую камеру дилатометра, которую заполняют рабочей жидкостью и герметизируют, отличающийся тем, что испытуемый образец насыщают жидкостью, моделирующей реальные условия эксплуатации дорожных покрытий в соответствующее время года, загерметизированную рабочую камеру дилатометра устанавливают в термокамеру, в которой ее замораживают или нагревают с установленной скоростью до установленной температуры в диапазоне соответственно до -60°С или до +60°С, при этом измеряют изменения объема рабочей жидкости в камере дилатометра датчиком уровня, соответствующие абсолютному изменению объема испытуемого образца, и по изменению этого объема оценивают величину линейной температурной деформации испытуемого образца.
2. Способ оценки линейных температурных деформаций дорожно-строительных материалов по п.1, отличающийся тем, что в качестве жидкости, моделирующей реальные условия эксплуатации дорожных покрытий при положительной температуре, используют воду.
3. Способ оценки линейных температурных деформаций дорожно-строительных материалов по п.1, отличающийся тем, что в качестве жидкости, моделирующей реальные условия эксплуатации дорожных покрытий при отрицательной температуре, используют водный раствор противогололедного материала.
4. Способ оценки линейных температурных деформаций дорожно-строительных материалов по п.1, отличающийся тем, что в качестве рабочей жидкости в дилатометре используют полиметилсилоксановую жидкость.
5. Способ оценки линейных температурных деформаций дорожно-строительных материалов по п.1, отличающийся тем, что при испытании в зоне отрицательных температур в качестве термокамеры используют морозильную камеру с устройством регулирования температуры в ней.
6. Способ оценки линейных температурных деформаций дорожно-строительных материалов по п.1, отличающийся тем, что датчики уровня залитой в камеру дилатометра рабочей жидкости и устройство регулирования температуры термокамеры подключают через контроллер к компьютеру.
7. Способ оценки линейных температурных деформаций дорожно-строительных материалов по п.1, отличающийся тем, что испытуемый образец рыхлых дорожно-строительных материалов помещают перед размещением в камеру дилатометра в герметичный чехол.
8. Комплект оборудования для осуществления способа оценки линейных температурных деформаций дорожно-строительных материалов, включающий в себя устройство для насыщения испытуемого образца жидкостью, состав которой моделирует состав жидкости в реальных условиях эксплуатации асфальтобетонных покрытий, а также, по крайней мере, одну камеру дилатометра для помещения в нее испытуемого образца, соединенную с датчиком уровня залитой в эту камеру полиметилсилоксановой жидкости, и термокамеру с устройством регулирования температуры.
ДИЛАТОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ БЕТОНА | 2006 |
|
RU2340887C2 |
Рычажный дилатометр | 1977 |
|
SU728063A1 |
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ АСФАЛЬТОБЕТОНА И УСТРОЙСТВО ДЛЯ ВЫПОЛНЕНИЯ СПОСОБА | 1949 |
|
SU87216A1 |
JP 9043175 A, 14.02.1997. |
Авторы
Даты
2013-01-27—Публикация
2011-06-23—Подача