КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ТИОМОЧЕВИНЫ И ФЛУОРЕСЦЕИНА НАТРИЯ ПРИ ИХ СОВМЕСТНОМ ПРИСУТСТВИИ В ПЛАСТОВЫХ ВОДАХ Российский патент 2013 года по МПК G01N21/17 

Описание патента на изобретение RU2473885C2

Изобретение относится к спектрофотометрическим методам анализа и может быть использовано в нефтяной и газовой отраслях промышленности для количественного определения в пластовых водах, специально закачиваемых в продуктивные пласты различных водорастворимых, малосорбируемых породой и экологически безопасных органических и неорганических соединений, называемых индикаторами или трассерами.

Известно (см.: Соколовский Э.В., Соловьев Г.Б., Тренчиков Ю.Т. Индикаторные методы изучения нефтегазоносных пластов. М.: Недра, 1986. - 158 с.), что в качестве индикаторов на нефтяных промыслах применяют флуоресцеин натрия, роданид аммония, хлористый натрий, нитраты, карбамид, тиомочевину и другие вещества. Наиболее сложной стадией индикаторных исследований является количественное определение в пластовых жидкостях метящего вещества (индикатора). Это связано с многокомпонентным составом пластовых жидкостей и их большой загрязненностью. Поэтому пробу пластовой воды перед измерением отделяют от нефти, фильтруют и добавляют соответствующие реагенты для анализа.

Известна методика определения концентраций четырехкомпонентной композиции индикаторов (флуоресцеин натрия, нитрат аммония, карбамид, тиокарбамид) при их совместном присутствии в пластовых водах с использованием спектрофотометрии и специальных градуировочных зависимостей для каждого отдельного индикатора (см.: Чернорубашкин А.И., Макеев Г.А., Гавриленко Г.А., Шамкин В.Н. // Нефтепромысловое дело. ВНИИОЭНГ, 1980. №5. С.15-15).

Известен способ спектрофотометрического определения концентраций трех различных индикаторов в пластовых водах (флуоресцеин натрия, роданид калия и карбамид) интерполяционным методом без построения градуировочных зависимостей с использованием двух и более растворов с фиксированным содержанием исследуемых компонентов в качестве внешних стандартов (см.: Онучак Л.А., Арутюнов Ю.И., Кудряшов С.Ю., Сизоненко Г.М., Дейнека О.В. Патент РФ №2003134880 от 01.12.2003 г.).

Известна также меченая жидкость для контроля за разработкой нефтегазового месторождения, содержащая в качестве метящего вещества тиомочевину. Количественно тиомочевина в пластовой воде определяется по реакции с калием железосинеродистым в присутствии уксусной кислоты (см.: Соловьев Г.Б., Соколовский Э.В., Сааков С.А. Авторское свидетельство СССР №646036 от 05.02.1979 г. по заявке Северо-Кавказского государственного научно-исследовательского и проектного института нефтяной промышленности №2554605 от 15.12.1977 г.).

Однако известные методики определения количественного содержания как индивидуальных индикаторов, так и отдельных индикаторов при их совместном присутствии в пластовых водах (за исключением флуоресцеина натрия методом люминесценции) имеют относительно низкие значения чувствительности и точности измерения концентрации из-за неучтенных при градуировке погрешностей, вносимых изменяющимся в процессе исследований составом пластовых вод и непостоянным уровнем фона неопределяемых ранее закаченных индикаторов на результаты измерения.

Наиболее близким к предлагаемому изобретению по совокупности существенных признаков является способ определения количественного содержания индикаторов в пластовых водах, при котором пробу, содержащую флуоресцеин натрия в присутствии многокомпонентной композиции индикаторов (нитрат натрия, роданид калия, карбамид), очищают от механических примесей, осветляют центрифугированием, в полученный раствор добавляют щелочь для количественного определения флуоресцеина натрия люминесцентным методом по предварительно выполненной градуировочной зависимости, причем концентрацию отдельных индикаторов в пробе определяют интерполяцией по результатам трех совокупных спектрофотометрических измерений на длинах волн, фиксированных для каждого отдельного индикатора, одно из измерений проводят для очищенной исследуемой пробы с добавками соответствующих реагентов, а два других измерения проводят для модельных растворов, приготовленных из исходной пластовой воды (без индикаторов) с добавлением флуоресцеина натрия в количестве, равном измеренному в пробе по градуировочной зависимости, и навески исследуемого индикатора в таком количестве, чтобы сигнал спектрофотометра для одного из модельных растворов был больше, а для другого - меньше, чем сигнал исследуемой пробы (см.: Онучак Л.А., Арутюнов Ю.И., Кудряшов С.Ю., Сизоненко Г.М., Астров В.И. Патент РФ №2301409 от 20.06.2007 г. по заявке СамГУ №2005124417 от 01.08.2005 г.).

В известном способе количественное содержание флуоресцеина натрия определяют по предварительно выполненной градуировочной зависимости с использованием модельных минерализованных растворов дистиллированной воды с фиксированными добавками флуоресцеина натрия при рН 9.

Недостатками известного способа являются отсутствие возможности спектрофотометрического определения содержания тиомочевины при одновременном присутствии флуоресцеина натрия в пробе из-за наложения его спектра поглощения на спектр тиомочевины, а также снижение точности измерения концентрации флуоресцеина натрия по предварительно выполненной градуировке на модельных растворах дистиллированной воды за счет влияния изменения состава и свойств пластовой воды при исследовании нефтегазовых месторождений.

Задачей изобретения является повышение точности спектрофотометрического определения концентрации тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах.

Эта задача решается за счет того, что при количественном анализе тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах исследуемую пробу отделяют от нефти, очищают от механических примесей, осветляют в центрифуге, добавляют в полученный раствор щелочь для количественного определения флуоресцеина натрия люминесцентным методом, причем концентрации тиомочевины и флуоресцеина натрия определяют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к исследуемой пробе, а два другие к модельным растворам, приготовленным из исследуемой пробы, с фиксированным разбавлением исходной пластовой водой (без индикатора) и фиксированной добавкой исследуемого индикатора в таком количестве, чтобы сигнал одного из модельных растворов был больше, а для другого меньше, чем сигнал исследуемой пробы, для анализа тиомочевины добавляют в исследуемую пробу фиксированное количество пентацианоакваферриата натрия и флуоресцеина натрия в количестве, равном измеренному в исследуемой пробе люминесцентным методом.

При решении поставленной задачи создается технический результат, который заключается в следующем:

- измерение концентрации тиомочевины и флуоресцеина натрия при их совместном присутствии в пробе осуществляют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к анализу исследуемой пробы, а два других к модельным растворам, приготовленным из исследуемой пробы путем фиксированного разбавления и фиксированной добавки исследуемого индикатора в таком количестве, чтобы сигнал для одного из растворов был больше, а для другого меньше сигнала исследуемой пробы;

- добавление флуоресцеина натрия в исследуемую пробу в количестве, равном измеренному люминесцентным методом в пробе при анализе тиомочевины, уменьшает погрешность спектрофотометрического измерения, связанную с наложением спектров поглощения флуоресцеина натрия на спектр комплексного соединения тиомочевины и пентацианоакваферриата натрия на длине волны 590 нм;

- интерполяционный метод измерения позволяет уменьшить погрешность измерения по сравнению с методом абсолютной градуировки за счет линеаризации только участка градуировочной зависимости, в точке измерения между двумя фиксированными внешними добавками, одна из которых обеспечивает большую, а другая меньшую концентрацию индикатора по отношению к его концентрации в исследуемой пробе, а не во всем рабочем диапазоне, как в случае построения градуировочной зависимости от минимальной до максимально возможной концентрации индикатора.

Пример конкретного выполнения способа

Предлагаемый способ количественного анализа тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах выполняют с использованием серийных флуоресцентных и спектрофотометрических анализаторов, например, Флюорат 02-3М («Люмэкс», Санкт-Петербург) и КФК-2.

Способ осуществляют следующим образом. Пробу пластовой воды из нефтедобывающей скважины, содержащую флуоресцеин натрия в присутствии тиомочевины, предварительно отделяют от нефти в делительной воронке, механические примеси удаляют фильтрованием через бумажный фильтр ФОФС-17 «синяя лента». Затем пробу осветляют путем осаждения коллоидных примесей с помощью коагулянта FeCl3 в щелочной среде. Полученный раствор переливают вместе с осадком в центрифужные пробирки и центрифугируют при 8-10 тыс. об/мин до тех пор, пока проба не станет прозрачной (без видимой опалесценции). Приготовленные описанным выше способом пробы пластовой воды подвергают следующим дополнительным операциям для определения концентрации флуоресцеина натрия и тиомочевины:

1) определение флуоресцеина натрия. В пробу добавляют несколько капель 2 н. NaOH для получения рН раствора, равного 9. При этом значительно возрастает интенсивность флуоресценции, измерение которой с использованием прибора Флюорат 02-3М при длине волны 525 нм обеспечивает определение концентрации флуоресцеина натрия интерполяционным методом. Для этого проводят дополнительные измерения концентрации флуоресцеина натрия в двух модельных растворах, приготовленных из исследуемой пробы путем фиксированного разбавления исходной пластовой воды (без индикаторов) и фиксированной добавки флуоресцеина натрия в таком количестве, чтобы концентрация индикатора для одного из них была больше, а для другого меньше, чем измеренная прибором в исследуемой пробе;

2) определение тиомочевины. К 25 см3 исследуемой пробы добавляют 0,5 см3 раствора пентацианоакваферриата натрия, который готовят следующим образом. В 20 см3 дистиллированной воды последовательно растворяют 1 г нитропруссида натрия и 1 г гидроксиламина солянокислого. Затем добавляют 2 г гидрокарбоната натрия. После прекращения выделения СО2 добавляют 0,1 см3 чистого жидкого брома, перемешивают, фильтруют и разбавляют дистиллированной водой в мерной колбе до 50 см3. Реактив сохраняет свои свойства около двух недель.

Измерение концентрации тиомочевины проводят после 40-50-минутной выдержки для полного завершения реакции образования комплекса тиомочевины и пентацианоакваферриата натрия.

Концентрацию тиомочевины определяют на фотоколориметре КФК-2 с кюветой толщиной 3 см и длине волны 590 нм интерполяционным методом по результатам трех совокупных измерений, одно из которых исследуемая проба, а два других - модельные растворы, приготовленные из исследуемой пробы с фиксированным разбавлением исходной пластовой воды и фиксированной добавкой тиомочевины в таком количестве, чтобы сигнал прибора для одного из них был больше, а для другого меньше сигнала в пробе. Для повышения точности анализа, в связи с наложением спектров поглощения флуоресцеина натрия на спектр комплексного соединения тиомочевины при длине волны 590 нм при определении концентрации тиомочевины, в исследуемую пробу добавляют флуоресцеин натрия в количестве, равном измеренному по п.1. интерполяционным методом на приборе Флюорат 02-3М.

Экспериментальную оценку выполнения предлагаемого и известного способов количественного анализа тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах проводили на примере анализа трех смесей этих индикаторов. Первая и вторая смеси содержали соответственно минимальные и максимальные концентрации анализируемых индикаторов, измеряемые приборами Флюорат 02-3М и КФК-2. Третья смесь содержала средние значения концентраций индикаторов в диапазоне измерения приборов. Для определения содержания отдельных индикаторов в анализируемой пробе известным способом использовали градуировочные зависимости вида

где Di - сигнал спектрофотометра; Сi - концентрация индикатора; аi и bi - коэффициенты градуировочной зависимости.

Градуировочные растворы готовили с использованием среднеминерализованной пластовой воды с добавками соответствующих реагентов для каждого отдельного индикатора. При построении градуировочной зависимости для определения тиомочевины в градуировочные растворы дополнительно добавляли флуоресцеин натрия со средней в пределах диапазона измерения концентрацией, чтобы уменьшить его влияние на результат измерения концентрации тиомочевины из-за наложения спектров поглощения при измерении индикаторов на выбранной длине волны.

Результаты градуировки приборов представлены в таблице 1.

Таблица 1 Результаты градуировки приборов для определения тиомочевины и флуоресцеина натрия n/n Наименование индикаторов и измерительного прибора Линейный диапазон измерения концентрации, мг/л Коэффициенты градуировочной зависимости и доверительные интервалы измерения b±Δb a±Δa 1 Флуоресцеин натрия Флюорат 02-3М 0,02-0,2 0,9±0,045 0,11±0,055 2 Тиомочевина КФК-2 2,0-20,0 0,06±0,003 0,21±0,02

Измерение концентрации индикаторов предлагаемым способом осуществляли интерполяционным методом по результатам трех совокупных измерений по уравнению

где Сi - концентрация i-го индикатора в исследуемой пробе; C1 и С2 - концентрации индикатора в двух модельных растворах; Di, D1 и D2 - сигналы спектрофотометра соответственно для i-го индикатора в пробе и в модельных растворах 1 и 2, причем D1>Di>D2.

Результаты эксперимента сведены в таблицу 2.

Таблица 2 Сравнительные данные экспериментальной проверки известного и предлагаемого способов n/n Исследуемые смеси Концентрация индикатора, мг/л Известный способ Предлагаемый способ Сигнал прибора, Di Концентрация, измеренная по (1), мг/л δ*, % Сигнал прибора Концентрация, измеренная по (2), мг/л δ*, % D1 D2 Di 1 Флуоресцеин натрия 0,04 0,144 0,038 5,0 0,137 0,155 0,145 0,039 2,5 Тиомочевина 2,0 0,315 1,75 12,5 0,401 0,224 0,326 1,93 3,5 2 Флуоресцеин натрия 0,2 0,304 0,216 8,0 0,305 0,256 0,297 0,208 3,8 Тиомочевина 20,0 1,576 22,76 13,8 1,582 1,23 1,46 20,86 4,3 3 Флуоресцеин натрия 0,12 0,211 0,112 6,6 0,221 0,198 0,214 0,116 3,3 Тиомочевина 11,0 0,94 11,7 6,4 0,916 0,814 0,891 11,35 3,2

* Относительная погрешность определения концентрации i-го индикатора по уравнениям (1) и (2).

Как видно из приведенных в таблице 2 данных, предлагаемый способ обеспечивает значительное повышение точности определения количественного содержания тиомочевины и флуоресцеина натрия при их совместном присутствии в исследуемых пробах по сравнению с известным способом. Так, при анализе всех трех исследуемых смесей максимальная относительная погрешность определения концентрации тиомочевины не превышает 4,3%, в то время как для известного способа максимальная погрешность определения концентрации тиомочевины составляет 13,8%.

Определение концентрации флуоресцеина натрия и тиомочевины интерполяционным методом в предлагаемом способе вместо построения градуировочной зависимости обеспечило уменьшение относительной погрешности измерения в среднем более, чем в два раза, что, по-видимому, связано с частичным исключением нелинейности сигнала приборов от концентрации на результаты измерения.

Использование предлагаемого способа количественного анализа тиомочевины и флуоресцеина натрия в пластовых водах позволяет повысить точность определения многокомпонентных композиций индикаторов при индикаторных исследованиях на нефтяных промыслах за счет нелинейности сигнала в точке измерения, а также уменьшить трудозатраты при измерении путем исключения градуировочной зависимости.

Похожие патенты RU2473885C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ ИНДИКАТОРОВ В ПЛАСТОВЫХ ВОДАХ 2005
  • Онучак Людмила Артемовна
  • Арутюнов Юрий Иванович
  • Кудряшов Станислав Юрьевич
  • Сизоненко Галина Михайловна
  • Астров Владимир Иосифович
RU2301409C2
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ГРУППЫ ФЛУОРЕСЦЕНТНЫХ И ИОННЫХ ИНДИКАТОРОВ В ПЛАСТОВОЙ ВОДЕ ПРИ ИХ СОВМЕСТНОМ ПРИСУТСТВИИ 2015
  • Хозяинов Михаил Самойлович
  • Грибова Елена Дмитриевна
  • Апендеева Олеся Кенжигалиевна
  • Мухина Ирина Владимировна
RU2595810C1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ФЛУОРЕСЦЕИНА НАТРИЯ 2016
  • Гавриленко Михаил Алексеевич
  • Шведская Элина Сергеевна
  • Гавриленко Мария Михайловна
  • Симолина Анна Евгеньевна
RU2621158C1
Количественный анализ композиции индикаторов для геофизических исследований в пластовой воде при их совместном присутствии 2020
  • Мухина Ирина Владимировна
  • Грибова Елена Дмитриевна
  • Зуев Борис Константинович
  • Полотнянко Наталья Александровна
  • Кузьмина Олеся Кенжигалиевна
RU2762994C1
СПОСОБ СПЕКТРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИЙ РАЗЛИЧНЫХ ИНДИКАТОРОВ В ПЛАСТОВЫХ ВОДАХ 2003
  • Онучак Людмила Артёмовна
  • Арутюнов Юрий Иванович
  • Кудряшов Станислав Юрьевич
  • Сизоненко Галина Михайловна
  • Дейнега Ольга Владимировна
RU2275619C2
Способ детектирования флуоресцентных и спиртовых трассеров при их совместном присутствии в пластовых водах при проведении трассерных межскважинных исследований 2023
  • Фархутдинов Ильдар Зуфарович
  • Камышников Антон Геннадьевич
  • Береговой Антон Николаевич
  • Заиров Рустэм Равилевич
  • Довженко Алексей Павлович
RU2798683C1
СПОСОБ ИНДИКАТОРНОГО ИССЛЕДОВАНИЯ СКВАЖИН И МЕЖСКВАЖИННОГО ПРОСТРАНСТВА 2014
  • Хисамов Раис Салихович
  • Халимов Рустам Хамисович
  • Хабибрахманов Азат Гумерович
  • Чупикова Изида Зангировна
  • Афлятунов Ринат Ракипович
  • Секретарев Владимир Юрьевич
RU2577865C1
СПОСОБ ОПРЕДЕЛЕНИЯ РОДАНИДА С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕТАКРИЛАТНОЙ МАТРИЦЫ 2016
  • Гавриленко Наталия Айратовна
  • Волгина Татьяна Николаевна
  • Гавриленко Михаил Алексеевич
RU2624797C1
СПОСОБ ОПРЕДЕЛЕНИЯ РОДАНИДА 2016
  • Гавриленко Михаил Алексеевич
  • Шведская Элина Сергеевна
  • Гавриленко Мария Михайловна
  • Симолина Анна Евгеньевна
RU2619442C1
СПОСОБ ОПРЕДЕЛЕНИЯ МАССОВОЙ КОНЦЕНТРАЦИИ ГАЗОВОГО КОНДЕНСАТА В ВОДОМЕТАНОЛЬНЫХ РАСТВОРАХ ФЛУОРИМЕТРИЧЕСКИМ МЕТОДОМ 2023
  • Васильев Антон Владимирович
  • Скрипунов Денис Александрович
  • Попова Елена Владимировна
  • Борисов Сергей Николаевич
  • Кузнецов Игорь Евгеньевич
  • Джуфер Олег Богданович
RU2797335C1

Реферат патента 2013 года КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ТИОМОЧЕВИНЫ И ФЛУОРЕСЦЕИНА НАТРИЯ ПРИ ИХ СОВМЕСТНОМ ПРИСУТСТВИИ В ПЛАСТОВЫХ ВОДАХ

Изобретение относится к спектрофотометрическим методам анализа и может быть использовано в нефтяной и газовой отраслях промышленности для количественного определения в пластовых водах многокомпонентных композиций индикаторов, например тиомочевины и флуоресцеина натрия. Количественный анализ, при котором исследуемую пробу отделяют от нефти, очищают от механических примесей, осветляют в центрифуге, добавляют щелочь для количественного определения флуоресцеина натрия люминесцентным методом, а концентрацию тиомочевины и флуоресцеина натрия определяют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к исследуемой пробе, а два других к модельным растворам, приготовленным из исследуемой пробы путем фиксированного разбавления пластовой водой и фиксированной добавки исследуемого индикатора в таком количестве, чтобы сигнал одного из модельных растворов был больше, а для другого меньше, чем сигнал исследуемой пробы. Причем для анализа тиомочевины в исследуемую пробу добавляют фиксированное количество пентацианоакваферриата натрия и флуоресцеин натрия в количестве, равном измеренному в исследуемой пробе люминесцентным методом. Техническим результатом изобретения является повышение точности измерения концентрации тиомочевины и флуоресцеина натрия. 1 пр., 2 табл.

Формула изобретения RU 2 473 885 C2

Количественный анализ тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах, при котором исследуемую пробу отделяют от нефти, очищают от механических примесей, осветляют в центрифуге и добавляют в полученный раствор щелочи для количественного определения флуоресцеина натрия люминесцентным методом, отличающийся тем, что концентрации тиомочевины и флуоресцеина натрия определяют интерполяционным методом по результатам трех совокупных измерений, одно из которых относится к исследуемой пробе, а два других - к модельным растворам, приготовленным из исследуемой пробы путем фиксированного разбавления исходной пластовой водой (без индикатора) и фиксированной добавки исследуемого индикатора в таком количестве, чтобы сигнал одного из модельных растворов был больше, а другого меньше, чем сигнал исследуемой пробы, причем для анализа тиомочевины в исследуемую пробу добавляют фиксированное количество пентацианоакваферриата натрия и флуоресцеин натрия в количестве, равном измеренному в исследуемой пробе люминесцентным методом.

Документы, цитированные в отчете о поиске Патент 2013 года RU2473885C2

СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ ИНДИКАТОРОВ В ПЛАСТОВЫХ ВОДАХ 2005
  • Онучак Людмила Артемовна
  • Арутюнов Юрий Иванович
  • Кудряшов Станислав Юрьевич
  • Сизоненко Галина Михайловна
  • Астров Владимир Иосифович
RU2301409C2
СПОСОБ СПЕКТРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИЙ РАЗЛИЧНЫХ ИНДИКАТОРОВ В ПЛАСТОВЫХ ВОДАХ 2003
  • Онучак Людмила Артёмовна
  • Арутюнов Юрий Иванович
  • Кудряшов Станислав Юрьевич
  • Сизоненко Галина Михайловна
  • Дейнега Ольга Владимировна
RU2275619C2
US 20020106810 A1, 08.08.2002
Невзаимный фазовращатель 1974
  • Усанов Дмитрий Александрович
  • Кабанов Лев Николаевич
SU515194A1
US 7674599 B2, 09.03.2010.

RU 2 473 885 C2

Авторы

Онучак Людмила Артёмовна

Сизоненко Галина Михайловна

Арутюнов Юрий Иванович

Дудиков Вадим Сергеевич

Даты

2013-01-27Публикация

2011-02-02Подача