СПОСОБ ПОЛУЧЕНИЯ ИОННО-ПЛАЗМЕННОГО ПОКРЫТИЯ НА ЛОПАТКАХ КОМПРЕССОРА ИЗ ТИТАНОВЫХ СПЛАВОВ Российский патент 2013 года по МПК C23C14/06 C23C14/24 

Описание патента на изобретение RU2478140C2

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера рабочих лопаток компрессора ГТД и паровой турбины из титановых сплавов от эрозионного разрушения, при одновременном повышении выносливости и циклической долговечности.

Известен способ вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающий создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, причем ионный поток и поток испаряемого материала, идущий от катода к подложке, экранируют, очистку проводят ионами инертного газа, после очистки экраны отводят и покрытие наносят в несколько этапов до получения требуемой толщины [Патент РФ №2192501, С23С 14/34, 10.11.2002].

Известен способ нанесения ионно-плазменных покрытий (преимущественно на лопатки турбин), включающий последовательное осаждение в вакууме первого слоя из титана толщиной от 0,5 до 5,0 мкм, затем нанесение второго слоя нитрида титана толщиной 6 мкм (Патент РФ №2165475, МПК С23С 14/16, 30/00, С22С 19/05, 21/04, 20.04.2001).

Основным недостатком этого способа является обеспечение недостаточно высокой эрозионной стойкости поверхности лопатки. Кроме того, при увеличении толщины покрытия (или каждого из слоев покрытия) происходит снижение адгезионной и усталостной прочности деталей с покрытиями, что ухудшает их ресурс и надежность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ получения ионно-плазменного покрытия на деталях из титановых сплавов, включающий помещение деталей в вакуумную камеру установки, создание требуемого вакуума, ионную очистку и ионно-имплантационную обработку поверхности основного материала детали с последующим нанесением на нее заданного количества пар слоев: слоя титана и слоя соединений титана с металлами и азотом (Патент РФ №2226227, МПК С23С 14/48, 27.03.2004).

Основным недостатком аналога является недостаточная надежность защиты от эрозионного разрушения при одновременном снижении предела выносливости, циклической долговечности. При этом повышение указанных свойств особенно важно для таких деталей из титановых сплавов, как компрессорные лопатки газотурбинных двигателей (ГТД) и лопатки паровых турбин.

Задачей настоящего изобретения является создание такого многослойного покрытия, которое было бы способно эффективно защищать детали из титановых сплавов от эрозионного износа в условиях воздействия газовых потоков, содержащих капельную фазу и абразивные частица, при одновременном повышении предела выносливости и циклической долговечности защищаемых деталей.

Техническим результатом заявляемого способа является повышение стойкости покрытия к эрозионному разрушению при одновременном повышении выносливости и циклической долговечности защищаемых деталей.

Технический результат достигается тем, что в способе получения ионно-плазменного покрытия на лопатках компрессора из титановых сплавов, включающем помещение деталей в вакуумную камеру установки, создание требуемого вакуума, ионную очистку и ионно-имплантационную обработку поверхности основного материала детали с последующим нанесением на нее заданного количества пар слоев: слоя титана и слоя соединений титана с металлами и азотом, в отличие от прототипа ионную очистку проводят ионами аргона при энергии от 8 до 10 кэВ, плотности тока от 130 МкА/см2 до 160 МкА/см2 в течение от 0,3 до 1,0 часа, затем проводят ионную имплантацию ионами азота при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 5·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1, причем слой титана в паре наносят толщиной от 50 до 60 нм, а слой соединений титана с металлами и азотом в паре толщиной от 300 нм до 400 нм, причем при формировании слоя соединений титана с металлами и азотом используют соединения титана со следующими металлами: Al, Mo, Zr, V, Si или их сочетание, при следующем их соотношении, вес.%: либо Al от 4 до 8%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, V от 1 до 3%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное Ti, либо Al от 4 до 8%, Mo от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное Ti, либо Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное Ti, а а после нанесения каждой пары слоев проводят имплантацию ионами азота с энергией от 5 до 10 кэВ в течение от 2 до 5 минут, при этом создание требуемого вакуума может производится турбомолекулярным насосом, а вакуум создавать от 10-5 до 10-7 мм рт.ст.

Технический результат достигается также тем, что в способе получения ионно-плазменного покрытия на деталях из титановых сплавов заданное количество пар слоев покрытия определяется ее общей толщиной, равной от 7 мкм до 15 мкм, а после нанесения требуемого количества слоев покрытия проводят их постимплантационный отжиг, причем постимплантационный отжиг и нанесение нанослойного покрытия проводят в одном вакуумном объеме за один технологический цикл, при этом возможны следующие варианты способа: ионную имплантацию проводят в импульсном режиме; ионную имплантацию проводят в непрерывном режиме; в качестве деталей из титановых сплавов используется лопатка компрессора газотурбинного двигателя или газотурбинной установки или лопатка паровой турбины.

Для оценки стойкости лопаток паровых и газовых турбин к их сопротивлению эрозионному износу были проведены следующие испытания. На образцы из титанового сплава ВТ6 были нанесены покрытия как по способу - прототипу (патент РФ №2226227, МПК С23С 14/48, 27.03.2004), согласно приведенных в способе-прототипе условий и режимов нанесения, так и покрытия по предлагаемому способу.

Режимы обработки образцов и нанесения покрытия по предлагаемому способу.

Ионная очистка: ионы аргона при энергии 6 кэВ - неудовлетворительный результат (Н.Р.); 8 кэВ - удовлетворительный результат (У.Р.); 10 кэВ (У.Р.); 12 кэВ (Н.Р.); плотность тока: 110 МкА/см2 (Н.Р.); 130 МкА/см2 (У.Р.); 160 МкА/см2 (У.Р.); 180 МкА/см2 (Н.Р.); время ионной очистки: 0,1 часа (Н.Р.); 0,3 часа (У.Р.); 1,0 часа (У.Р.); 1,5 часа (Н.Р.).

Ионная имплантация ионами N: энергия - 20 кэВ (Н.Р.); 25 кэВ (У.Р.); 30 кэВ (У.Р.); 40 кэВ (Н.Р.); доза - 1,2·1017 см-2 (Н.Р.); 1,6·1017 см-2 (У.Р.); 2·1017 см-2 (У.Р.); 3·1017 см-2 (Н.Р.); скоростью набора дозы - 0,4·1015 с-1 (Н.Р.); 0,7·1015 с-1 (У.Р.); 1·1015 с-1 (У.Р.); 3·1015 c-1 (H.P.).

Толщина слоя титана в паре: 40 нм (Н.Р.); 50 нм (У.Р.); 60 нм (У.Р.); 80 нм (Н.Р.). Толщина слоя соединений титана с металлами и азотом в паре: 200 нм (Н.Р.); 300 нм (У.Р.); 400 нм (У.Р.); 500 нм (Н.Р.).

Соединения титана с металлами и азотом - использовались следующие металлы: Al, Mo, Zr, V, Si и их сочетание (AlМo, AlMoZr, AlMoZrV, AlMoZrVSi, AlZrVSi, AlMoVSi, AlMoZrSi, AlVSi, AlMoSi), при следующем их содержании, вес.%; Аl - [2% (Н.Р.); 4% (У.Р.); 8%(У.Р.) 10% (Н.Р.)]; Zr - [0,5% (Н.Р.); 1% (У.Р.); 3%(У.Р.); 5% (Н.Р.)]; Мо - [0,5% (Н.Р.); 1% (У.Р.); 2%(У.Р.); 4% (Н.Р.)]; V - [0,5% (Н.Р.); 1% (У.Р.); 3%(У.Р.); 5% (Н.Р.)]; Si от 1 до 4% - [0,5% (Н.Р.); 1% (У.Р.); 4%(У.Р.); 6% (Н.Р.)]; остальное - Ti.

После нанесения каждой пары слоев проводили имплантацию ионов азота с энергиями: 2 кэВ (Н.Р.); 5 кэВ (У.Р.); 10 кэВ (У.Р.); 14 кэВ (Н.Р.). Время имплантации слоя: 1 мин (Н.Р.); 2 мин (У.Р.); 5 мин (У.Р.); 10 мин (Н.Р.).

Создание требуемого вакуума производилось турбомолекулярным насосом; создавали вакуум от 10-5 до 10-7 мм рт.ст.

Общая толщина покрытия-прототипа и покрытия, нанесенного по предлагаемому способу, составляла от 7 мкм до 15 мкм.

После нанесения покрытия проводили постимплантационный отжиг, в одном вакуумном объеме установки за один технологический цикл.

Ионную имплантацию проводили как в импульсном, так и непрерывном режимах. В качестве деталей из титановых сплавов использовались лопатки компрессора газотурбинного двигателя, лопатки газотурбинной установки и лопатки паровой турбины.

Эрозионная стойкость поверхности образцов исследовалась по методике ЦИАМ (Технический отчет ЦИАМ “Экспериментальное исследование износостойкости вакуумных ионно-плазменных покрытий в запыленном потоке воздуха” №10790, 1987. - 37 с.) на пескоструйной установке 12Г-53 струйно-эжекторного типа. Для обдува использовался молотый кварцевый песок с плотностью р=2650 кг/м3, твердость HV=12000 МПа. Обдув производился при скорости воздушно-абразивного потока 195-210 м/с, температура потока 265-311 K, давление в приемной камере 0,115-0,122 МПа, время воздействия - 120 с, концентрация абразива в потоке до 2-3 г/м3. Результаты испытания показали, что эрозионная стойкость покрытий, полученных по предлагаемому способу, увеличилась по сравнению с покрытием-прототипом приблизительно в 4,2..4,6 раз.

Кроме того, были проведены испытания на выносливость и циклическую долговечность образцов из титанового сплава ВТ6 на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (σ-1) образцов в исходном состоянии (без покрытия) составляет 400 МПа, у образцов, упрочненных по способу-прототипу - 410-415 МПа, а по предлагаемому способу 420-440 МПа.

Таким образом, проведенные сравнительные испытания показали, что применение в способе получения ионно-плазменного покрытия на деталях из титановых сплавов, следующих приемов: помещение деталей в вакуумную камеру установки; создание требуемого вакуума; ионная очистка и ионно-имплантационная обработка поверхности основного материала детали с последующим нанесением на нее заданного количества пар слоев: слоя титана и слоя соединений титана с металлами и азотом; проведение ионной очистки ионами аргона при энергии от 8 до 10 кэВ, плотности тока от 130 МкА/см2 до 160 МкА/см2 в течение от 0,3 до 1,0 часа; проведение ионной имплантации ионами азота при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 5·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1; нанесение слоя титана в паре толщиной от 50 до 60 нм, а слоя соединений титана с металлами и азотом в паре толщиной от 300 нм до 400 нм; использование при формировании слоя соединений титана с металлами и азотом соединений титана со следующими металлами: Al, Mo, Zr, V, Si или их сочетания при следующем их соотношении, вес.%: либо Al от 4 до 8%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, V от 1 до 3%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное Ti, либо Al от 4 до 8%, Mo от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное Ti, либо Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное Ti, либо Аl от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное Ti; проведение, после нанесения каждой пары слоев имплантации ионами азота с энергией от 5 до 10 кэВ в течение от 2 до 5 минут; создание требуемого вакуума турбомолекулярным насосом; создание вакуума от 10-5 до 10-7 мм рт.ст.; определение заданного количества пар слоев покрытия от ее общей толщины, равной от 8 мкм до 10 мкм; проведение после нанесения требуемого количества слоев покрытия постимплантационного отжига; проведение постимплантационного отжига и нанесение нанослойного покрытия в одном вакуумном объеме за один технологический цикл; проведение ионной имплантации в импульсном режиме; проведение ионной имплантации в непрерывном режиме; использование в качестве детали из титановых сплавов лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатки паровой турбины позволяет увеличить, по сравнению с прототипом, эрозионную стойкость, выносливость и циклическую долговечность, что подтверждает заявленный технический результат предлагаемого изобретения - повышение стойкости покрытия к эрозионному разрушению при одновременном повышении выносливости и циклической долговечности защищаемых деталей.

Похожие патенты RU2478140C2

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ЛОПАТКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2013
  • Смыслов Анатолий Михайлович
  • Ганцев Рустем Халимович
  • Галиев Владимир Энгелевич
  • Мингажев Аскар Джамилевич
  • Таминдаров Дамир Рамилевич
  • Фаткуллина Диляра Зенуровна
RU2533223C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2011
  • Павлинич Сергей Петрович
  • Дыбленко Михаил Юрьевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
RU2479667C2
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И ЭЛЕКТРОДУГОВОЙ ИСПАРИТЕЛЬ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2013
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Давлеткулов Раис Калимуллович
  • Мингажева Алиса Аскаровна
RU2554252C2
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ЛОПАТОК КОМПРЕССОРА ИЗ ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ И СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ 2011
  • Павлинич Сергей Петрович
  • Дыбленко Михаил Юрьевич
  • Селиванов Константин Сергеевич
  • Гордеев Вячеслав Юрьевич
  • Смыслов Анатолий Михайлович
  • Смыслова Марина Константиновна
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
RU2496910C2
СПОСОБ ЗАЩИТЫ ЛОПАТОК КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ИЗ ТИТАНОВЫХ СПЛАВОВ ОТ ПЫЛЕАБРАЗИВНОЙ ЭРОЗИИ 2013
  • Смыслова Марина Константиновна
  • Смыслов Анатолий Михайлович
  • Дыбленко Юрий Михайлович
  • Мингажев Аскар Джамилевич
  • Дыбленко Михаил Юрьевич
RU2552202C2
СПОСОБ УПРОЧНЯЮЩЕЙ ОБРАБОТКИ ДЕТАЛИ ИЗ СПЛАВА НА НИКЕЛЕВОЙ ОСНОВЕ (ВАРИАНТЫ) 2018
  • Настека Вадим Викторович
  • Семенова Ирина Петровна
  • Большаков Борис Олегович
  • Смыслов Анатолий Михайлович
  • Криони Николай Константинович
RU2702515C1
СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ МОНОКОЛЕСА КОМПРЕССОРА С ЛОПАТКАМИ ИЗ ТИТАНОВЫХ СПЛАВОВ 2018
  • Мингажев Аскар Джамилевич
  • Криони Николай Константинович
  • Якупов Илья Тагирович
RU2680630C1
СПОСОБ НАНЕСЕНИЯ МНОГОСЛОЙНОГО ИОННО-ПЛАЗМЕННОГО ПОКРЫТИЯ НА ПОВЕРХНОСТЬ ГРАВЮРЫ ШТАМПА ИЗ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА 2016
  • Дыбленко Юрий Михайлович
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
  • Смыслов Анатолий Михайлович
  • Таминдаров Дамир Рамилевич
  • Смыслова Марина Константиновна
  • Селиванов Константин Сергеевич
RU2631573C1
СПОСОБ ФОРМИРОВАНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ПОВЕРХНОСТНОГО СЛОЯ НА ДЕТАЛИ ИЗ СПЛАВА НА НИКЕЛЕВОЙ ОСНОВЕ (ВАРИАНТЫ) 2018
  • Настека Вадим Викторович
  • Семенова Ирина Петровна
  • Большаков Борис Олегович
  • Смыслов Анатолий Михайлович
  • Криони Николай Константинович
RU2702516C1
СПОСОБ НАНЕСЕНИЯ МНОГОСЛОЙНОГО ИОННО-ПЛАЗМЕННОГО ПОКРЫТИЯ НА ПОВЕРХНОСТЬ ГРАВЮРЫ ШТАМПА ИЗ ЖАРОПРОЧНОЙ СТАЛИ 2016
  • Дыбленко Юрий Михайлович
  • Гонтюрев Василий Андреевич
  • Мингажев Аскар Джамилевич
  • Смыслов Анатолий Михайлович
  • Таминдаров Дамир Рамилевич
  • Смыслова Марина Константиновна
  • Селиванов Константин Сергеевич
RU2631572C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ИОННО-ПЛАЗМЕННОГО ПОКРЫТИЯ НА ЛОПАТКАХ КОМПРЕССОРА ИЗ ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Детали помещают в вакуумную камеру установки, создают требуемый вакуум, ионную очистку и ионно-имплантационную обработку поверхности основного материала детали с последующим нанесением на нее заданного количества пар слоев в виде слоя титана и слоя соединений титана с металлами и азотом. При этом ионную очистку проводят ионами аргона при энергии от 8 до 10 кэВ, плотности тока от 130 МкА/см2 до 160 МкА/см2 в течение от 0,3 до 1,0 часа, затем проводят ионную имплантацию ионами азота при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 5·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 c-1. Слой титана в упомянутой паре слоев наносят толщиной от 50 до 60 нм, а слой соединений титана с металлами и азотом в упомянутой паре слоев - толщиной от 300 нм до 400 нм, причем при формировании слоя соединений титана с металлами и азотом используют соединения титана со следующими металлами, выбранными из Al, Mo, Zr, V, Si или их сочетания. После нанесения каждой пары слоев проводят имплантацию ионами азота с энергией от 5 до 10 кэВ в течение от 2 до 5 минут. Обеспечивается защита пера рабочей лопатки компрессора и турбины из титанового сплава от эрозионного разрушения при одновременном повышении выносливости и циклической долговечности. 15 з.п. ф-лы.

Формула изобретения RU 2 478 140 C2

1. Способ получения ионно-плазменного покрытия на лопатке компрессора из титанового сплава, включающий помещение детали в вакуумную камеру установки, создание требуемого вакуума, ионную очистку и ионно-имплантационную обработку поверхности основного материала детали с последующим нанесением на нее заданного количества пар слоев в виде слоя титана и слоя соединений титана с металлами и азотом, отличающийся тем, что ионную очистку проводят ионами аргона при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 ч, затем проводят ионную имплантацию ионами азота при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 5·1017 см-2, со скоростью набора дозы от 0,7·1015 c-1 до 1·1015 с-1, причем слой титана в паре слоев наносят толщиной от 50 до 60 нм, а слой соединений титана с металлами и азотом в упомянутой паре слоев толщиной от 300 нм до 400 нм, причем при формировании слоя соединений титана с металлами и азотом используют соединения титана со следующими металлами из Al, Mo, Zr, V, Si или их сочетания, при следующем их соотношении, вес.%: Al от 4 до 8%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, Mo от 1 до 2%, остальное - Ti, или А1 от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, или Аl от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, или Аl от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, или Аl от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, или Аl от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, или Аl от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, а после нанесения каждой пары слоев проводят имплантацию ионами азота с энергией от 5 до 10 кэВ в течение от 2 до 5 мин.

2. Способ по п.1, отличающийся тем, что создание требуемого вакуума производят турбомолекулярным насосом.

3. Способ по п.2, отличающийся тем, что создают вакуум от 10-5 до 10-7 мм рт.ст.

4. Способ по любому из пп.1-3, отличающийся тем, что заданное количество пар слоев покрытия определяется его общей толщиной, равной от 7 мкм до 15 мкм.

5. Способ по п.1, отличающийся тем, что после нанесения требуемого количества слоев покрытия проводят постимплантационный отжиг, причем постимплантационный отжиг и нанесение нанослойного покрытия проводят в одном вакуумном объеме за один технологический цикл.

6. Способ по п.2, отличающийся тем, что после нанесения требуемого количества слоев покрытия проводят постимплантационный отжиг, причем постимплантационный отжиг и нанесение нанослойного покрытия проводят в одном вакуумном объеме за один технологический цикл.

7. Способ по п.3, отличающийся тем, что после нанесения требуемого количества слоев покрытия проводят постимплантационный отжиг, причем постимплантационный отжиг и нанесение нанослойного покрытия проводят в одном вакуумном объеме за один технологический цикл.

8. Способ по п.4, отличающийся тем, что после нанесения требуемого количества слоев покрытия проводят постимплантационный отжиг, причем постимплантационный отжиг и нанесение нанослойного покрытия проводят в одном вакуумном объеме за один технологический цикл.

9. Способ по любому из пп.1-3, 5-8, отличающийся тем, что ионную имплантацию проводят в импульсном режиме.

10. Способ по любому из пп.1-3, 5-8, отличающийся тем, что ионную имплантацию проводят в непрерывном режиме.

11. Способ по п.4, отличающийся тем, что ионную имплантацию проводят в импульсном режиме.

12. Способ по п.4, отличающийся тем, что ионную имплантацию проводят в непрерывном режиме.

13. Способ по любому из пп.1-3, 5-8, 11, 12, отличающийся тем, что в качестве детали из титанового сплава используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

14. Способ по п.4, отличающийся тем, что в качестве детали из титанового сплава используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

15. Способ по п.9, отличающийся тем, что в качестве детали из титанового сплава используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

16. Способ по п.10, отличающийся тем, что в качестве детали из титанового сплава используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

Документы, цитированные в отчете о поиске Патент 2013 года RU2478140C2

RU 2007141873 А, 20.05.2009
СПОСОБ ПОЛУЧЕНИЯ ИОННО-ПЛАЗМЕННОГО НАНОСЛОЙНОГО ПОКРЫТИЯ НА ЛОПАТКАХ ТУРБОМАШИН ИЗ ТИТАНОВЫХ СПЛАВОВ 2008
  • Смыслова Марина Константиновна
  • Дыбленко Михаил Юрьевич
  • Мингажев Аскар Джамилевич
  • Селиванов Константин Сергеевич
RU2388685C1
СПОСОБ НАНЕСЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКИЕ ИЗДЕЛИЯ 2002
  • Падеров А.Н.
  • Векслер Ю.Г.
RU2228387C2
СПОСОБ ВАКУУМНОГО ИОННО-ПЛАЗМЕННОГО НАНЕСЕНИЯ ПОКРЫТИЙ НА ПОДЛОЖКУ 2000
  • Голощапов Ф.А.
  • Кузнецов И.А.
  • Петров В.П.
  • Пестов Ю.А.
  • Семенов В.Н.
  • Деркач Г.Г.
  • Додонов А.И.
RU2192501C2
US 20050061251 A1, 24.03.2005
US 4904542 A1, 27.02.1990.

RU 2 478 140 C2

Авторы

Павлинич Сергей Петрович

Дыбленко Михаил Юрьевич

Селиванов Константин Сергеевич

Гордеев Вячеслав Юрьевич

Смыслов Анатолий Михайлович

Смыслова Марина Константиновна

Гонтюрев Василий Андреевич

Мингажев Аскар Джамилевич

Даты

2013-03-27Публикация

2011-06-02Подача