СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД Российский патент 2013 года по МПК E21C39/00 

Описание патента на изобретение RU2478785C1

Изобретение относится к горному делу и предназначено для определения напряжений в массиве горных пород.

Известен способ определения напряженного состояния массива горных пород, включающий прозвучивание ультразвуковыми импульсами участков массива, расположенных между параллельными скважинами на разной их глубине, измерение длительности переднего фронта каждого их принятых ультразвуковых импульсов, по относительному изменению которой с глубиной судят о распределении напряжения в окрестностях горной выработки, при этом глубина, на которой отмечен минимум длительности переднего фронта ультразвукового импульса, соответствует максимуму зоны опорного давления [1].

Недостатком известного способа является невозможность с его помощью определения абсолютных значений главных напряжений.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения напряжений в массиве горных пород, включающий бурение исследовательской и соосной с ней измерительной скважин, размещение в последней измерительного устройства в виде цилиндра, обуривание измерительной скважины и извлечение из нее керна, разрезание керна на диски, по результатам последующих испытаний которых судят о напряженном состоянии массива [2].

В указанном способе измерительное устройство выполняют в виде полого цилиндра из оптически чувствительного материала, закрепляют это устройство в скважине с помощью клеевого состава, а полученные из него диски разной толщины и разной ориентации к оси цилиндра исследуют на поляризационно-оптической установке, с помощью которой определяют напряжения, действующие в оптически чувствительном материале дисков, полученных из керна. Переход от этих напряжений к напряжениям, действующим в массиве по направлениям, совпадающим с плоскостью соответствующего диска, осуществляют, используя известный аппарат теории упругости.

Недостатком известного способа является низкая точность и большая трудоемкость определения величины и направления максимального напряжения в массиве, действующего в плоскости, ортогональной оси измерительной скважины. Это связано с тем, что указанное определение осуществляется косвенным путем на основе расчетных формул, в которые вводят полученные экспериментально значения оптического коэффициента напряжений, разности хода поляризованного света и упругих постоянных в оптически чувствительном материале измерительного устройства, а также упругие постоянные горных пород в области измерительной скважины. При этом общая погрешность результата косвенных измерений складывается из частных погрешностей измеренных величин. Поскольку сами частные погрешности относительно велики (особенно это касается погрешностей измерения упругих постоянных горных пород), то результирующая погрешность косвенного определения искомых параметров оказывается также весьма значительной. Кроме того, в известном способе нагрузка массива передается на измерительное устройство через некоторый склеивающий переходный слой, который заполняет пространство между указанным устройством и стенками измерительной скважины и который, обладая своими упругими свойствами и жесткостью, также вносит дополнительную погрешность в искомый результат.

Трудоемкость известного способа предопределяется необходимостью экспериментального определения большого количества входящих в расчетные формулы указанных выше величин и прежде всего упругих модулей горной породы, получение которых связано с предварительным керновым бурением в области массива, где располагается измерительная скважина.

В настоящей заявке решается задача создания способа, обеспечивающего повышение точности и снижение трудоемкости определения величины и направления максимального напряжения в массиве, действующего в плоскости, ортогональной оси измерительной скважины.

Для решения поставленной задачи в способе определения напряжений в массиве горных пород, включающем бурение исследовательской и соосной с ней измерительной скважин, размещение в последней измерительного устройства в виде цилиндра, обуривание измерительной скважины и извлечение из нее керна, разрезание керна на диски, по результатам испытаний которых судят о напряженном состоянии массива, измерительное устройство выполняют путем установки в измерительной скважине двух пакеров, диаметральные метки на внешних круговых поверхностях которых ориентируют в скважине горизонтально, в пространство между пакерам закачивают эпоксидную смолу с отвердителем и наполнителем из кварцевого песка, обуривание измерительной скважины проводят в непосредственной близости от ее границы с измерительным устройством после отвердения эпоксидной смолы и завершения деформаций восстановления массива вокруг измерительной скважины, причем извлеченный из скважины керн разрезают перпендикулярно его оси на n одинаковых по толщине дисков, которые подвергают тестовому нагружению вдоль диаметра, направление которого при переходе от диска к диску смещают на угол 180°/n, при этом в процессе нагружения регистрируют зависимости суммарного счета N импульсов акустической эмиссии в дисках, выделяют из них характерную зависимость с максимальным возрастанием крутизны при достижении определенного уровня тестовой нагрузки и по этому уровню судят о максимальном напряжении, действующем в массиве в плоскости, ортогональной оси измерительной скважины, а по углу между горизонтальной меткой на пакере и направлением тестового нагружения, при котором наблюдается эта характерная зависимость, судят об азимутальном угле действия указанного максимального напряжения.

Предлагаемый способ базируется на использовании так называемого акустико-эмиссионного эффекта памяти в композитных материалах (эффект Кайзера), который заключается в скачкообразном увеличении крутизны суммарного счета импульсов акустической эмиссии деформируемого образца в момент, когда его нагружение достигает максимального уровня нагрузки предшествующего цикла деформирования. Причем степень проявления эффекта зависит, с одной стороны, от материала, из которого изготовлен образец, а с другой, - от степени совпадения направления его нагружения в первом (установочном) и втором (тестовом) цикле нагружения. В частности, проведенные авторами экспериментальные исследования показали, что эффект четко проявляется в цилиндрических образцах из эпоксидной смолы с отвердителем и наполнителем в виде кварцевого песка при условии, если эти образцы деформируются в одном и том же диаметральном направлении в первом и втором циклах нагружения. В то же время, чем больше отличается направление деформирования образца в первом и втором циклах нагружения, тем менее четко проявляется эффект Кайзера. Если же указанные направления ортогональны, эффект практически полностью пропадает.

Способ определения напряжений в массиве горных пород иллюстрируется фиг.1-4, где на фиг.1 представлена схема, показывающая технологию создания измерительного устройства и его размещение в скважине, на фиг.2 показан вид извлеченного из массива керна и места его последующего разрезания на диски, на фиг.3 - схема нагружения образцов, на фиг.4 - зависимости суммарного счета акустической эмиссии от давления, соответствующие разным углам поворота дисков.

Схема, представленная на фиг.1, включает исследовательскую скважину 1 и соосную с ней измерительную скважину 2, размещенные в измерительной скважине 2 глубинный пакер 3 и внешний пакер 4 с нанесенными на их внешние поверхности горизонтальными отметками 5 и 6, трубопровод 7, соединенный с внешним пакером 4 посредством штуцера 8, измерительное устройство 9 из эпоксидной смолы с отвердителем и наполнителем и контур обуривания кольцевой щелью 10.

На фиг.2 представлен вид извлеченного из массива керна, включающего внешний пакер 4 с вмонтированным в него штуцером 8, измерительное устройство 9 из эпоксидной смолы, отвердителя и наполнителя из кварцевого песка, подготовленное для разрезания его на равные диски 11-20, глубинный пакер 3 и перенесенную с внешних сторон пакеров на боковую поверхность измерительного устройства 9 отметку горизонтали 21.

Схема на фиг.3 включает нарезанные из керна диски 11-20, верхний пуансон 22, нижний пуансон 23, нагрузка на которые передается от механического пресса (условно не показан), перенесенную на поверхность образца отметку горизонтали 24 и направление приложения тестовой нагрузки 25.

Графики на фиг.4 отражают зависимости суммарного счета N импульсов акустической от давления для углов α=90° - кривая 26, α=45° - кривая 27 и α=0° - кривая 28.

Способ определения напряжений в массиве горных пород осуществляют следующим образом: в массиве горных пород бурится разведочная скважина 1 и соосная с ней измерительная скважина 2, в измерительной скважине 2 последовательно устанавливают внутренний пакер 3 и внешний пакер 4 из эластичного материала с нанесенными на их внешних поверхностях горизонтальными отметками 5 и 6, между которыми посредством трубопровода 7, соединенного штуцером 8 с внешним пакером 4, закачивается эпоксидная смола с отвердителем и наполнителем из кварцевого песка, которые образуют измерительное устройство 9. После полного отвердения эпоксидной смолы и завершения деформаций восстановления массива отсоединяют трубопровод 7, а измерительную скважину 2 обуривают кольцевой щелью 10 в непосредственной близости от измерительного устройства, извлекают керн, содержащий измерительное устройство 9, переносят на его боковые поверхности отметку горизонтали 21, разрезают его на одинаковые по толщине диски 11-20 (в общем случае их количество будет n), которые нагружают вдоль диаметра на прессовом оборудовании с использованием верхнего пуансона 22 и нижнего пуансона 23 при тестовой нагрузке Ртест с одновременной регистрацией зависимости суммарного счета импульсов акустической эмиссии, при этом каждый последующий диск смещают на угол β=180°/n между направлением тестового нагружения Ртест и отметкой горизонтали 24. Далее выбирают из всех дисков тот, при испытании которого наблюдается максимальное возрастание крутизны суммарного счета акустической эмиссии при достижении тестовой нагрузкой и которому соответствует угол α=0° и по этому уровню судят о максимальном напряжении, действующем в массиве в плоскости, ортогональной оси измерительной скважины, а по углу β, при котором наблюдается эта характерная зависимость, судят об азимутальном угле действия указанного максимального напряжения. Причем в случае, если измерительная скважина пробурена в направлении одного из главных напряжений в массиве, то указанное выше и полученное напряжение будет представлять собой также одно из главных напряжений.

При лабораторных испытаниях предлагаемого способа в образце мраморного блока кубической формы с длиной грани 300 мм было пробурено отверстие (модель скважины) диаметром 40 мм. В отверстии последовательно устанавливались и закреплялись глубинный и внешний пакеры, изготовленные из эластичной резины, между пакерами посредством вмонтированной во внешний пакер трубки вводилась эпоксидная смола марки ЭД-20 с отвердителем и наполнителем из кварцевого песка крупностью 0.2-0.4 мм. Образец мрамора одноосно нагружали и выдерживали под нагрузкой до полной полимеризации эпоксидной смолы (24 ч). После этого измерительное устройство выбуривалось кольцевой щелью, затем извлекалось из блока и разрезалось на равные диски толщиной 10 мм. Полученные диски испытывались на одноосное сжатие вдоль диаметра с одновременной регистрацией суммарного счета импульсов акустической эмиссии N с помощью акустико-эмиссионного измерительного комплекса A-Line 32D, причем каждый последующий диск поворачивался на некоторый фиксированный угол относительно отметки горизонтали. Сопоставление величины и направления установочного силового воздействия, создаваемого прессом на блок мрамора с тестовым напряжением (полученным путем пересчета силы с учетом площади пуансонов), действующим в полученном из керна цилиндрическом образце, которому соответствует наибольшая крутизна возрастания суммарного счета акустической эмиссии, показало, что относительная погрешность определения величины максимального напряжения, действующего в плоскости, ортогональной оси измерительной скважины, не превышает 5%. В то же время погрешность определения азимутального угла действия указанного напряжения зависит от числа дисков, на которые был распилен керн. В частности, в рамках описанного эксперимента при числе дисков, равном 10, погрешность определения угла составила 18°.

Описанный выше способ определения напряжений в массиве горных пород обладает рядом преимуществ, связанных с тем, что, во-первых, при пересчете тестовых усилий, развиваемых прессом, в напряжения, действующие в массиве, не используются вспомогательные данные (упругие модули горных пород и др.), вносящие в конечный результат дополнительные погрешности, во-вторых, размещение измерительного устройства в скважине в жидком состоянии позволяет исключить технически сложную и трудоемкую операцию вклеивания в массив упругих элементов.

Таким образом, предложенный способ определения напряжений в массиве горных пород позволяет решить задачу повышения точности и снижения трудоемкости определения величины и направления максимального напряжения, действующего в плоскости, ортогональной оси измерительной скважины, за счет применения акустико-эмиссионного эффекта памяти в композитном материале, размещенном в массиве.

Источники информации, принятые во внимание при составлении заявки на изобретение

1. Авторское свидетельство СССР №1149010, кл. Е21С 3 9/00, опубл. в БИ №13 от 07.04.85 г.

2. Авторское свидетельство СССР №889849, кл. Е21С 39/00, опубл. в БИ №46 от 25.12.81 г.

Похожие патенты RU2478785C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНОГО МАССИВА 2011
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Корчак Андрей Владимирович
RU2485314C1
СПОСОБ ИССЛЕДОВАНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД 2014
  • Николенко Петр Владимирович
  • Кормнов Алексей Алексеевич
  • Шкуратник Владимир Лазаревич
RU2557287C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2014
  • Новиков Евгений Александрович
  • Шкуратник Владимир Лазаревич
RU2557288C1
Способ определения напряжений в массиве горных пород 1980
  • Барковский Владимир Михайлович
  • Филатов Николай Антонинович
SU889849A1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛАВНЫХ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 1994
  • Белявский Ю.Г.
  • Удалов А.Е.
RU2064579C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛАВНЫХ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Белявский Ю.Г.
  • Пискарев В.К.
  • Удалов А.Е.
RU2029084C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2007
  • Вознесенский Владимир Александрович
  • Филимонов Юрий Леонидович
  • Шкуратник Владимир Лазаревич
RU2339815C1
Способ определения горизонтальных напряжений в массиве горных пород 2022
  • Салимов Олег Вячеславович
  • Васильев Владимир Васильевич
  • Кравченко Александр Николаевич
RU2789252C1
Способ определения напряженного состояния массива горных пород 2019
  • Николенко Петр Владимирович
  • Шкуратник Владимир Лазаревич
RU2704086C1
Способ определения напряженного состояния массива горных пород 1988
  • Айтматов Ильгиз Торокулович
  • Корн Александр Викторович
  • Кожогулов Камчибек Чонмурунович
  • Тома Клаус
  • Гросс Уве
  • Коварик Иахим
SU1610009A1

Иллюстрации к изобретению RU 2 478 785 C1

Реферат патента 2013 года СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД

Изобретение относится к горному делу и предназначено для определения напряжений в массиве горных пород. Техническим результатом является повышение точности и снижение трудоемкости определения величины и направления максимального напряжения в массиве, действующего в плоскости, ортогональной оси измерительной скважины. Способ основан на использовании акустико-эмиссионного эффекта памяти в композитных материалах. Измерительное устройство формируют путем установки в измерительной скважине двух пакеров, между которыми закачивают эпоксидную смолу с отвердителем и наполнителем из кварцевого песка. После отвердения смолы и завершения деформаций восстановления массива устройство обуривают кольцевой щелью, извлекают из массива и распиливают на равные диски. Полученные диски испытывают на прессовом оборудовании в условиях одноосного сжатия с одновременной регистрацией суммарного счета импульсов акустической эмиссии, причем каждый последующий диск поворачивают на фиксированный угол. В результате испытаний выявляют зависимость с максимальным возрастанием крутизны скорости счета акустической эмиссии при достижении определенного уровня тестовой нагрузки и по этому уровню судят о максимальном напряжении, действующем в массиве, а по углу поворота диска судят об азимутальном угле действия указанного напряжения. 4 ил.

Формула изобретения RU 2 478 785 C1

Способ определения напряжений в массиве горных пород, включающий бурение исследовательской и соосной с ней измерительной скважин, размещение в последней измерительного устройства в виде цилиндра, обуривание измерительной скважины и извлечение из нее керна, разрезание керна на диски, по результатам испытаний которых судят о напряженном состоянии массива, отличающийся тем, что измерительное устройство выполняют путем установки в измерительной скважине двух пакеров, диаметральные метки на внешних круговых поверхностях которых ориентируют в скважине горизонтально, в пространство между пакерами закачивают эпоксидную смолу с отвердителем и наполнителем из кварцевого песка, обуривание измерительной скважины производят в непосредственной близости от ее границы с измерительным устройством после отвердения эпоксидной смолы и завершения деформаций восстановления массива вокруг измерительной скважины, причем извлеченный из скважины керн разрезают перпендикулярно его оси на n одинаковых по толщине дисков, которые подвергают тестовому нагружению вдоль диаметра, направление которого при переходе от диска к диску смещают на угол 180°/n, при этом в процессе нагружения регистрируют зависимости суммарного счета импульсов акустической эмиссии в дисках, выделяют из них характерную зависимость с максимальным возрастанием крутизны при достижении определенного уровня тестовой нагрузки и по этому уровню судят о максимальном напряжении, действующем в массиве в плоскости ортогональной оси измерительной скважины, а по углу между горизонтальной меткой на пакере и направлением тестового нагружения, при котором наблюдается эта характерная зависимость, судят об азимутальном угле действия указанного максимального напряжения.

Документы, цитированные в отчете о поиске Патент 2013 года RU2478785C1

Способ определения напряжений в массиве горных пород 1980
  • Барковский Владимир Михайлович
  • Филатов Николай Антонинович
SU889849A1
Способ определения напряжений в массиве горных пород 1982
  • Ярагин Александр Алексеевич
  • Кириченко Анатолий Селиванович
SU1036924A2
Способ оценки напряженного состояния горных пород в массиве 1976
  • Борщ-Компониец Виталий Иванович
  • Мосунов Владимир Алексеевич
SU620601A1
СПОСОБ ОЦЕНКИ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Кю Николай Георгиевич
  • Опарин Виктор Николаевич
RU2292456C1
US 4657306 А, 14.04.1987.

RU 2 478 785 C1

Авторы

Шкуратник Владимир Лазаревич

Николенко Петр Владимирович

Рубан Анатолий Дмитриевич

Кормнов Алексей Алексеевич

Даты

2013-04-10Публикация

2011-09-14Подача