СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД Российский патент 2015 года по МПК E21C39/00 

Описание патента на изобретение RU2557288C1

Изобретение относится к горному делу и может быть использовано для определения факта достижения значением максимального главного напряжения, действующего на участке массива горных пород, величины, равной или превышающей 0,9 от их предела прочности при сжатии σсж.

Известен способ определения напряжений в массиве горных пород, включающий отбор из массива образцов, их механическое нагружение с одновременным определением водонасыщенности, при этом нагрузку, при которой появляется влага из образца, принимают за искомое напряжение в массиве (авторское свидетельство СССР №439604, кл. E21C 39/00, опубл. 15.08.1974).

Недостатком данного способа является то, что он может применяться только для водонасыщенных пород с открытой пористостью и обеспечивает получение интегральных оценок уровня напряжений, не позволяя определять значения составляющих тензора напряжений.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения напряжений в массиве горных пород, включающий извлечение из массива образцов в направлении, совпадающем с направлением действия максимального главного напряжения в массиве, тестовом воздействии на каждый из них, в процессе которого измеряют активность акустической эмиссии (патент RU №2339815, кл. E21C 39/00, опубл. 27.11.2008).

Недостатком известного способа является невозможность с его помощью установить факт превышения величиной напряжений в массиве пластичных горных пород критического уровня, равного или превышающего 0,9 от их предела прочности при сжатии (σсж) и свидетельствующего о переходе породы в стадию предразрушения.

Отмеченный недостаток обусловлен тем, что известный способ, позволяя определить абсолютное значение действующих в массиве напряжений, не дает возможности определить соотношение этого значения с пределом прочности пластичной горной породы в месте отбора соответствующего образца, поскольку достоверная информация об указанном пределе прочности отсутствует.

Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения, действующего на исследуемом участке массива пластичных горных пород, критического уровня, равного или превышающего 0,9 от их σсж, что свидетельствует о переходе породы в стадию предразрушения.

Технический результат достигается следующим образом.

В способе определения напряжений в массиве горных пород, включающем извлечение из массива образцов, ориентированных в направлении действия максимального главного напряжения, тестовое воздействие на каждый из них, в процессе которого измеряют активность акустической эмиссии, в качестве тестового воздействия используют объемное нагревание от 20°C до 570°C и последующее остывание образцов до 140-150°C, определяют отношение амплитуд огибающих активности акустической эмиссии, возникающей при остывании и нагревании, по значению которого судят о достижении напряжением на исследуемых участках массива величины, равной или превышающей 0,9 от σсж горной породы, свидетельствующей о переходе последней в стадию предразрушения.

Предлагаемый способ базируется на установленных авторами экспериментально закономерностях акустической эмиссии при нагревании и последующем остывании образцов каменной соли, предварительно подвергнутых в течение 24 часов различной и индивидуальной для каждого образца механической нагрузке. Суть этих закономерностей заключается в зависимости отношения амплитуд огибающих активностей активности акустической эмиссии образцов каменной соли от того, превышает или нет уровень их предварительного нагружения пороговое значение 0,9·σсж.

Способ определения напряжений в массиве горных пород иллюстрируется фиг. 1 и фиг. 2, где приведены в качестве примера характерные экспериментально полученные временные распределения 1 и 4 активности N АЭ, возникающей в ходе тестового воздействия на образцы каменой соли, предварительно испытавшие механические нагрузки свыше или до 0,9 σсж. В качестве тестового воздействия используют нагрев и остывание, описываемые зависимостями 2 и 5 температуры геоматериала образцов в функции от времени t. Кривая 3 на фиг. 1 отражает зависимость огибающей активности акустической эмиссии каменной соли, предварительно нагруженной в пределах (0,90-0,95)·σсж, а кривая 6 на фиг. 2 отражает зависимость огибающей активности акустической эмиссии для каменной соли, предварительно нагруженной до 0,90·σсж.

Зависимости, приведенные на фиг. 1 и фиг. 2, получены на представительной выборке образцов каменной соли Верхнекамского месторождения, каждый из которых перед термическими испытаниями в течение суток подвергался индивидуальному механическому нагружению до или свыше 0,90·σсж. Величина σсж и доля σсж, соответствующая переходу исследуемой каменной соли на стадию предразрушения, были определены на аналогичных образцах традиционным способом, основанным на деформационных измерениях в ходе механического нагружения.

Способ определения напряжений в массиве горных пород реализуют следующим образом.

Из массива выбуривают керны, ориентированные в направлении действия максимального главного напряжения. Эти керны используют для изготовления образцов, отражающих свойства исследуемых участков массива. На каждом образце подготавливают плоскую поверхность для контакта с кварцевым волноводом диаметром 10 мм, через который осуществляют прием сигналов акустической эмиссии, возникающих при термическом нагружении образца геоматериала. Последовательно каждый из образцов серии помещают в трубчатую печь, например Naberthcrm RT 50/250/11 с контроллером типа Р 320, и проводят его нагрев от комнатной температуры 20°C до 570°C со скоростью около 2,0 град/мин. После достижения образцом указанной максимальной температуры ему дают остыть до 140-150°C. При этом регистрируют активность акустической эмиссии, возникающую в ходе как нагревания, так и остывания образцов, с помощью, например, акустико-эмиссионной измерительной системы A-Line 32D. Затем для каждого из образцов строят огибающую активности акустической эмиссии, выделяют на этой огибающей максимальные амплитуды в области остывания и нагрева. Рассчитывают отношение указанных амплитуд. При превышении этим отношением единицы, участок массива, из которого получен соответствующий образец, характеризуют как находящийся на стадии потери грузонесущей способности, т.к. слагающий его геоматериал нагружен свыше 0,9 от предела прочности при сжатии, то свидетельствует о его переходе на стадию предразрушения. Таким образом, предложенный способ определения напряжений в массиве горных пород позволяет выявить факт достижения величиной главного напряжения, действующего на участке геологической среды, критического, с точки зрения потери ее грузонесущей способности, значения, соответствующего нагрузке, равной или превышающей 0,9 предела прочности при сжатии геоматериала, слагающего этот участок массива.

Похожие патенты RU2557288C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2007
  • Вознесенский Владимир Александрович
  • Филимонов Юрий Леонидович
  • Шкуратник Владимир Лазаревич
RU2339815C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМОСТОЙКОСТИ УГЛЕЙ 2015
  • Новиков Евгений Александрович
  • Ошкин Роман Олегович
  • Шкуратник Владимир Лазаревич
  • Эпштейн Светлана Абрамовна
RU2593441C1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА МАТЕРИАЛА ОБРАЗЦА МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ 2012
  • Шкуратник Владимир Лазаревич
  • Новиков Евгений Александрович
RU2494389C1
СПОСОБ МЕХАНИЧЕСКИХ ИСПЫТАНИЙ ОБРАЗЦОВ ГОРНЫХ ПОРОД НА ПРОЧНОСТЬ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Вознесенский Александр Сергеевич
  • Корчак Андрей Владимирович
  • Шкуратник Владимир Лазаревич
  • Вознесенский Владимир Александрович
  • Тавостин Михаил Николаевич
RU2359125C1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА МАТЕРИАЛОВ МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ 2011
  • Шкуратник Владимир Лазаревич
  • Новиков Евгений Александрович
RU2478947C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА МАТЕРИАЛА 2008
  • Вознесенский Александр Сергеевич
  • Корчак Андрей Владимирович
  • Нарышкин Данила Андреевич
  • Тавостин Михаил Николаевич
  • Шкуратник Владимир Лазаревич
RU2361188C1
Акустико-эмиссионный способ контроля изменения устойчивости обработанного твердеющими веществами грунтового массива 2021
  • Новиков Евгений Александрович
  • Клементьев Евгений Андреевич
RU2775159C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2011
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Рубан Анатолий Дмитриевич
  • Кормнов Алексей Алексеевич
RU2478785C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ УЧАСТКА МАССИВА ГОРНЫХ ПОРОД 1992
  • Носов В.В.
  • Масолов В.Г.
  • Носов С.В.
RU2042813C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНОГО МАССИВА 2011
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Корчак Андрей Владимирович
RU2485314C1

Иллюстрации к изобретению RU 2 557 288 C1

Реферат патента 2015 года СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела прочности при сжатии σсж, что свидетельствует о переходе породы в стадию предразрушения. Способ, в котором из массива в направлении, совпадающем с направлением действующего в нем максимального главного напряжения, извлекают образцы. Подвергают их объемному нагреву от 20 до 570°C, затем дают им остыть до температуры 140-150°C, одновременно регистрируют активность акустической эмиссии. Определяют отношение амплитуд огибающих активности акустической эмиссии, возникающей при остывании и нагревании, по значению которого судят о достижении напряжением на исследуемых участках массива величины нагрузки, равной или превышающей 0,9 от предела прочности при сжатии горной породы, свидетельствующей о переходе последней в стадию предразрушения. 2 ил.

Формула изобретения RU 2 557 288 C1

Способ определения напряжений в массиве горных пород, включающий извлечение из массива образцов в направлении, совпадающем с направлением действия максимального главного напряжения в массиве, тестовое воздействие на каждый из них, в процессе которого измеряют активность акустической эмиссии, отличающийся тем, что в качестве тестового воздействия используют объемное нагревание от 20°C до 570°C и последующее остывание образцов до 140-150°C, определяют отношение амплитуд огибающих активности акустической эмиссии, возникающей при остывании и нагревании, по значению которого судят о достижении напряжением на исследуемых участках массива величины нагрузки, равной или превышающей 0,9 от предела прочности при сжатии горной породы, свидетельствующей о переходе последней в стадию предразрушения.

Документы, цитированные в отчете о поиске Патент 2015 года RU2557288C1

СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2007
  • Вознесенский Владимир Александрович
  • Филимонов Юрий Леонидович
  • Шкуратник Владимир Лазаревич
RU2339815C1
Способ контроля качества сварных соединений 1984
  • Карамышев Мурад Арифович
  • Краснов Андрей Викторович
  • Халикова Гузель Раисовна
  • Изюмова Алевтина Иннокентьевна
SU1221587A1
Акустический эмиссионный способ контроля изделий стержневой и трубчатой формы 1980
  • Машечков Вячеслав Васильевич
  • Муравин Григорий Борисович
SU905781A1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА МАТЕРИАЛОВ МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ 2011
  • Шкуратник Владимир Лазаревич
  • Новиков Евгений Александрович
RU2478947C1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА МАТЕРИАЛА ОБРАЗЦА МЕТОДОМ АКУСТИЧЕСКОЙ ЭМИССИИ 2012
  • Шкуратник Владимир Лазаревич
  • Новиков Евгений Александрович
RU2494389C1
CN 101526009 A, 09.09.2009
ШКУРАТНИК В.Л, Методы определения напряженно- деформированного состояния массива горных пород, Москва, 2012, с
Зубчатое колесо со сменным зубчатым ободом 1922
  • Красин Г.Б.
SU43A1
Найдено из Интернет:

RU 2 557 288 C1

Авторы

Новиков Евгений Александрович

Шкуратник Владимир Лазаревич

Даты

2015-07-20Публикация

2014-06-17Подача