СПОСОБ ИССЛЕДОВАНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД Российский патент 2015 года по МПК E21C39/00 

Описание патента на изобретение RU2557287C1

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин.

Известен способ определения напряженного состояния массива горных пород, включающий прозвучивание ультразвуковыми импульсами участков массива, расположенных между параллельными скважинами на разной их глубине, измерение длительности переднего фронта каждого из принятых ультразвуковых импульсов, по относительному изменению которой с глубиной судят о распределении напряжения в окрестностях горной выработки, при этом глубина, на которой отмечен минимум длительности переднего фронта ультразвукового импульса, соответствует максимуму зоны опорного давления [1] (Авторское свидетельство СССР №1149010, кл. E21C 39/00, опубл. в БИ №13 от 07.04.85 г.).

Недостатком известного способа является низкая точность определения глубины зоны опорного давления. Это связано с тем, что измеряемая длительность переднего фронта ультразвукового импульсного сигнала в массиве существенно зависит от контактных условий акустических преобразователей со стенками контрольной скважины. При условии необходимости многократного прозвучивания участков массива между параллельными скважинами влияние контактных условий на длительность переднего фронта ультразвукового импульса может превысить влияние непосредственно напряженного состояния.

Способ исследования напряженного состояния массива горных пород, включающий размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии на выступающем из скважины конце звукопровода [2] (Способ определения изменения напряженного состояния горного массива: заявка 2011147713/03 (071550), Рос. Федерация: МПК E21C 39/00 / Шкуратник В.Л., Николенко П.В., Корчак А.В. (Рос. Федерация) заявитель ФГБОУ ВПО МГГУ; заявл. 24.11.2011; приоритет 24.11.2011 (Решение о выдаче патента на изобретение от 04.02.2013)).

В указанном способе каждое из текстолитовых колец подвергают предварительному механическому нагружению в одинаковом и совпадающем с диаметром направлении, а об изменении напряженного состояния приконтурного массива судят по скачкообразным увеличениям крутизны нарастания суммарного счета принимаемых акустическим преобразователем сигналов акустической эмиссии.

Недостатком известного способа является невозможность с его использованием определить направления максимального напряжения, действующего в плоскости ортогональной оси измерительной скважины.

В настоящей заявке решается задача создания способа, обеспечивающего возможность определения направления максимального напряжения, действующего ортогонально измерительной скважине.

Для решения поставленной задачи в способе исследования напряженного состояния массива горных пород, включающем размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо и регистрацию акустической эмиссии на выступающем из скважины конце звукопровода, в массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом, причем все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей, по зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета АЭ во времени и по направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины.

Предлагаемый способ базируется на экспериментально установленной закономерности влияния угла α между направлением приложения нагрузки и направлением слоев в анизотропных композиционных материалах на характер зависимости суммарного счета N акустической эмиссии (АЭ) от времени t. Эта закономерность проявляется в том, что зависимость N(t) возрастает при всех углах α кроме 90°, при котором N(t) характеризуется спадом, что обусловлено значительной прочностью слоистых композитов на растяжение вдоль слоев.

Способ исследования напряженного состояния массива горных пород в окрестностях выработки иллюстрируется фиг. 1 и фиг. 2, где на фиг. 1 представлена схема проведения акустико-эмиссионных измерений в контрольных скважинах, а на фиг. 2 - зависимости суммарного счета акустической эмиссии от времени N(t), регистрируемые в процессе проведения контроля.

Схема, представленная на фиг. 1, включает параллельные измерительные скважины 1-4, в которых размещены металлические звукопроводы 5-8, на которых жестко закреплены кольца 9-12, изготовленные из анизотропного слоистого композиционного материала. На выступающих из скважин 1-4 торцах звукопроводов 5-8 размещены приемные акустические преобразователи 13-16, которые с помощью соответствующих электрических кабелей 17-20 связаны с аппаратурой измерения параметров акустической эмиссии 21.

На фиг. 2 представлены графики 22-25 зависимостей суммарного счета N акустической эмиссии от времени t, зарегистрированные в кольцах 9-12 соответственно.

Способ исследования напряженного состояния массива горных пород осуществляют следующим образом. Из слоистого анизотропного композиционного материала изготавливают кольца 9-12, внутренний диаметр которых равен диаметру металлических звукопроводов 5-8 соответственно. При изготовлении колец соблюдают ориентацию слоев в композите ортогонально плоскости кольца. Каждое кольцо с помощью клеевого соединения жестко закрепляют на соответствующем звукопроводе.

В подземных условиях на выбранном участке массива бурят измерительные скважины 1-4, лежащие в одной горизонтальной плоскости и имеющие диаметры, равные внешнему диаметру колец 9-12. При этом для исключения взаимовлияния скважин расстояние между ними не должно быть менее пяти диаметров скважин. В скважине 1 на заданной глубине размещают звукопровод 5 с жестко закрепленным на нем кольцом 9 так, чтобы направление слоев композита составляло угол γ=0° с горизонтальной линией, вдоль которой пробурены скважины. Аналогичным образом размещают звукопроводы 6-8 с кольцами 10-12 в скважинах 2-4, при этом для кольца 10 угол γ=45°, для кольца 11 γ=90° и для кольца 12 γ=135°.

На выступающих из скважин 1-4 торцах звукопроводов 5-8 с применением контактной жидкости закрепляют приемные акустические преобразователи 13-16, каждый из которых соединен посредством соответствующих электрических кабелей 17-20 с аппаратурой измерения параметров акустической эмиссии 21.

Под действием напряжений породы в окрестностях скважин 1-4 начинают деформироваться, причем в наибольшей степени в направлении максимального напряжения в массиве. При этом стенки скважин начинают оказывать давление на кольца 9-12, в которых происходит активное дефектообразование, сопровождаемое генерацией импульсов акустической эмиссии.

С помощью аппаратуры измерения параметров АЭ 21 получают зависимости 22-25 суммарного счета N акустической эмиссии от времени t, зарегистрированные в звукопроводах 5-8 соответственно (фиг. 2). Из всех зависимостей выбирают ту, на которой наблюдается четкий спад N(t). По углу γ между направлением слоев в кольце, с звукопровода которого была получена характерная зависимость N(t), и горизонтальной линией скважин судят о направлении максимального напряжения, действующего в плоскости ортогональной оси скважины.

Описанный способ позволяет оценивать направление действия напряжения с разрешающей способностью в 45°. Повышение разрешающей способности достигается увеличением количества скважин и пропорциональным уменьшением угла γ. Так, например, при семи скважинах разрешающая способность составит 30°.

Описанный способ испытывался в лабораторных условиях. В четырех кубических блоках мрамора со стороной 150 мм оборудовались сквозные отверстия диаметром 42 мм. Из текстолита марки ПТК изготавливались четыре кольца внутренним диаметром 10 мм, внешним - 42 мм и толщиной 12 мм, при этом обеспечивалась ортогональность слоев композита плоскости кольца. Каждое из колец снабжалось стальным звукопроводом диаметром 10 мм и длиной 250 мм. Подготовленные таким образом кольца жестко закреплялись в мраморных блоках, при этом первое кольцо располагалось с соблюдением горизонтальности слоев в композите, а все последующие с углами между слоями композита и горизонталью 45°, 90°, 135° соответственно. На противоположных концах звукопроводов закреплялись преобразователи акустической эмиссии GT-200, подключенные к акустико-эмиссионному измерительному комплексу A-Line 32D. Каждый из блоков мрамора подвергался одноосному нагружению до уровня нагрузки 20 МПа, при этом одновременно с нагружением велась регистрация суммарного счета акустической эмиссии. По результатам испытаний было выявлено, что спад зависимости суммарного счета АЭ от времени нагружения наблюдается только в диске №1, для которого угол между горизонталью и направлением слоев в кольце составил 0°. Во всех остальных кольцах зависимость суммарного счета от времени характеризовалась устойчивым ростом.

Таким образом, предложенный способ обеспечивает технический результат, заключающийся в обеспечении возможности определения направления максимального напряжения, действующего ортогонально измерительной скважине.

Источники, принятые во внимание при составлении заявки на изобретение:

1. Авторское свидетельство СССР №1149010, кл. E21C 39/00, опубл. в БИ №13 от 07.04.85 г.

2. Способ определения изменения напряженного состояния горного массива: заявка 2011147713/03 (071550), Рос. Федерация: МПК E21C 39/00 / Шкуратник В.Л., Николенко П.В., Корчак А.В. (Рос. Федерация) заявитель ФГБОУ ВПО МГГУ; заявл. 24.11.2011; приоритет 24.11.2011 (Решение о выдаче патента на изобретение от 04.02.2013).

Похожие патенты RU2557287C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНОГО МАССИВА В ОКРЕСТНОСТЯХ ВЫРАБОТКИ 2013
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Цариков Александр Юрьевич
RU2532817C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНОГО МАССИВА 2011
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Корчак Андрей Владимирович
RU2485314C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2011
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Рубан Анатолий Дмитриевич
  • Кормнов Алексей Алексеевич
RU2478785C1
Способ определения напряженного состояния массива горных пород 1988
  • Айтматов Ильгиз Торокулович
  • Корн Александр Викторович
  • Кожогулов Камчибек Чонмурунович
  • Тома Клаус
  • Гросс Уве
  • Коварик Иахим
SU1610009A1
СПОСОБ ОЦЕНКИ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Кю Николай Георгиевич
RU2591708C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2014
  • Новиков Евгений Александрович
  • Шкуратник Владимир Лазаревич
RU2557288C1
Способ определения координат очага акустической и электромагнитной эмиссии 1989
  • Лебедев Владислав Филиппович
  • Павлов Анатолий Георгиевич
SU1657641A1
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ ПРИЗАБОЙНОЙ ЧАСТИ МАССИВА 2006
  • Апрельский Владимир Валентинович
  • Бокий Борис Всеволодович
  • Деглин Борис Моисеевич
  • Деглина Юлия Борисовна
  • Ефремов Игорь Алексеевич
  • Мелконян Ашот Аркадьевич
  • Широких Наталия Васильевна
RU2310758C1
Способ определения главных напряжений в массиве 1989
  • Мансуров Владимир Аглиевич
  • Тилегенов Кадыр Тилегенович
SU1694894A1
СПОСОБ ДИСПЕРГАЦИИ ТВЕРДЫХ МАТЕРИАЛОВ 2005
  • Анисимов Виктор Николаевич
RU2312708C2

Иллюстрации к изобретению RU 2 557 287 C1

Реферат патента 2015 года СПОСОБ ИССЛЕДОВАНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин. Технический результат направлен на обеспечение возможности определения направления максимального напряжения, действующего ортогонально измерительной скважине. Способ включает размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии (АЭ) на выступающем из скважины конце звукопровода. В массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом. Все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей. По зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета АЭ во времени. По направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины. 2 ил.

Формула изобретения RU 2 557 287 C1

Способ исследования напряженного состояния массива горных пород, включающий размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии на выступающем из скважины конце звукопровода, отличающийся тем, что в массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом, причем все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей, по зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета акустической эмиссии во времени, и по направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины.

Документы, цитированные в отчете о поиске Патент 2015 года RU2557287C1

СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНОГО МАССИВА 2011
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Корчак Андрей Владимирович
RU2485314C1
Способ контроля напряженного состояния массива горных пород и устройство для его осуществления 1990
  • Ким Валерий Александрович
  • Жданкин Николай Александрович
SU1789685A1
Способ прогноза удароопасности массива горных пород 1988
  • Леонов Андрей Александрович
SU1654595A1
Способ контроля напряженного состояния массива горных пород 1983
  • Ямщиков Валерий Сергеевич
  • Шкуратник Владимир Лазаревич
  • Сирота Дон Нусевич
SU1149010A1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛАВНЫХ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Белявский Ю.Г.
  • Пискарев В.К.
  • Удалов А.Е.
RU2029084C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2011
  • Шкуратник Владимир Лазаревич
  • Николенко Петр Владимирович
  • Рубан Анатолий Дмитриевич
  • Кормнов Алексей Алексеевич
RU2478785C1
СПОСОБ ОЦЕНКИ НАПРЯЖЕННОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД 2012
  • Кю Николай Георгиевич
RU2485313C1
CN 101526009 A, 09.09.2009

RU 2 557 287 C1

Авторы

Николенко Петр Владимирович

Кормнов Алексей Алексеевич

Шкуратник Владимир Лазаревич

Даты

2015-07-20Публикация

2014-06-17Подача