СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА Российский патент 2013 года по МПК B64G1/50 

Описание патента на изобретение RU2481255C2

Изобретение относится к космической технике, преимущественно к системам терморегулирования (СТР) телекоммуникационных спутников.

В настоящее время СТР телекоммуникационных спутников включает в себя жидкостный контур (см., например, патент Российской Федерации (РФ) №2209750 [1]), заправленный теплоносителем. Циркуляцию теплоносителя в жидкостном контуре осуществляет электронасосный агрегат (ЭНА). Для обеспечения бескавитационной работы ЭНА (поддержания необходимого давления на входе в ЭНА) жидкостный тракт на его входе соединен с жидкостной полостью гидроаккумулятора, газовая полость которого, разъединенная от жидкостной полости сильфоном, заправлена жидкостью - фреоном 141 в, который обеспечивает, например, необходимое давление (абсолютное) в диапазоне от 0,75 кгс/см2 (≈ 75 кПа) до 0,95 кгс/см2 (≈ 95 кПа) в результате периодической работы электрообогревателя, установленного на корпусе гидроаккумулятора. В условиях изготовления СТР сборку ее осуществляют при температуре окружающего воздуха в цехе, равной (24±3)°С, в этом случае в газовой полости гидроаккумулятора давление паров фреона 141 в (гидроаккумулятор заправляется фреоном 141 в автономно при его изготовлении с измерением, в частности, максимально возможного значения жесткости сильфона при его полном растяжении, т.е. минимального значения перепада давления между газовой и жидкостной полостями, при котором сильфон полностью растянут, например, 0,15 кгс/см2 (≈ 15 кПа)) изменяется в диапазоне от 0,65 кгс/см2 до 0,85 кгс/см2 (при изменении температуры окружающего воздуха от 21°С до 27°С).

При сборке СТР на конструкции космического аппарата (КА) гидроаккумулятор для обеспечения его работоспособности как при наземных испытаниях, так и при эксплуатации на орбите устанавливают как можно дальше от центра масс КА по направлению оси ОХ, направленной к поверхности Земли (при наземных условиях) и по направлению к Земле (при условиях эксплуатации на орбите), т.е. газовая полость с двухфазной жидкостью наиболее удалена от центра масс КА - см. патент РФ №2329920 [2].

Согласно принятой технологии изготовления после сборки (монтажной сваркой стыков жидкостного тракта) СТР на конструкции КА (см. патент РФ №2307774 [3]) до проверки герметичности для обеспечения качества жидкостного тракта его заполняют чистым растворителем (например, изооктаном), прокачивают по жидкостному контуру. Затем его сливают из жидкостного тракта СТР в емкость заправщика, для чего продувают жидкостный тракт сжатым воздухом (обеспечивается минимально возможная продолжительность операции по сравнению с другими способами) давлением выше атмосферного (более 1 кгс/см2) до отсутствия потока изооктана на выходе из жидкостного тракта СТР. После этого осуществляют вакуумную сушку - полное удаление из жидкостного тракта остатков изооктана (оставшиеся на поверхности жидкостного тракта из-за ее смачиваемости). Далее КА (с СТР) помещают в вакуумную камеру и проводят проверку герметичности жидкостного тракта на соответствие требуемой норме.

Существенным недостатком такой подготовки жидкостного тракта СТР к проверке герметичности является недостаточно полный слив изооктана из жидкостного тракта и связанный с этим длительный цикл вакуумной сушки, это обусловлено тем, что при продувке жидкостного тракта давлением выше атмосферного изооктан, наряду со сливом из жидкостного тракта в емкость заправщика (где атмосферное давление), поступает в жидкостную полость гидроаккумулятора, сжимает сильфон до нижнего упора и полностью максимально заполняет жидкостную полость, т.е. когда на выходе из жидкостного тракта будет зафиксировано отсутствие изооктана, в жидкостной полости будет максимально возможное ее объему количество изооктана;

следовательно, из-за такой неполноты слива изооктана из жидкостного тракта в дальнейшем проводимая вакуумная сушка будет характеризоваться длительным циклом выполнения ее.

Наиболее близким прототипом предлагаемого авторами технического решения является способ изготовления СТР КА на основе [3], который включает в себя следующие операции:

- сборку СТР, включающей в себя комплектующие: сотовые панели радиаторов и приборов с жидкостными трактами, трубопроводы, ЭНА, гидроаккумулятор, содержащий жидкостную полость, сильфон, газовую полость с двухфазной рабочей жидкостью - фреоном 141 в на конструкции КА;

- заправку чистым растворителем - изооктаиом - жидкостного тракта, промывку его, слив из жидкостного тракта изооктана в емкость заправщика продувкой сжатым (давлением выше атмосферного) воздухом до отсутствия изооктана на выходе из жидкостного тракта;

- вакуумную сушку жидкостного тракта до полного удаления изооктана из него;

- проверку герметичности жидкостного тракта СТР помещением КА в вакуумную камеру на соответствие требуемой норме.

Как было указано выше, известный способ изготовления обладает существенным недостатком - недостаточно полным сливом изооктана из жидкостного тракта перед вакуумной сушкой его, обуславливающим длительный цикл осуществления.

Целью предлагаемого авторами нового технического решения является устранение вышеуказанного существенного недостатка прототипа.

Поставленная цель достигается тем, что в способе изготовления системы терморегулирования космического аппарата, включающем сборку жидкостного тракта системы из комплектующих на конструкции аппарата, заполнение жидкостного тракта чистым растворителем, прокачку его по жидкостному тракту, после этого слив его из жидкостного тракта продувкой сжатым воздухом в емкость заправщика до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, затем осуществление вакуумной сушки и проверки герметичности жидкостного тракта помещением аппарата в вакуумную камеру, после зафиксирования отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе прекращают продувку его сжатым воздухом и до начала операции вакуумной сушки измеряют температуру газовой полости гидроаккумулятора, затем кратковременно вакуумируют жидкостный тракт до абсолютного давления, равного упругости насыщенных паров двухфазной рабочей жидкости гидроаккумулятора минус значение максимальной жесткости сильфона при его полном растяжении, после этого дополнительно продувают его сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, после чего начинают осуществление вакуумной сушки, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами, известной патентной и научно-технической литературы предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе изготовления СТР КА.

На фиг.1-5 изображены последовательные принципиальные схемы реализации предложенного авторами технического решения (где:

1 - космический аппарат; 2 - система терморегулирования; 3 - сотовые панели с встроенными жидкостными коллекторами; 4 - жидкостный тракт; 5 - радиаторы с встроенными жидкостными коллекторами; 6 - гидроаккумулятор; 6.1 - жидкостная полость гидроаккумулятора; 6.2 - газовая полость гидроаккумулятора, частично заполненная двухфазной рабочей жидкостью - фреоном 141 в; 6.3 - сильфон; 6.4 -электрообогреватель; 6.5 - датчик температуры; 7 - электронасосный агрегат; 8 - вентиль «Заправка СТР»; 9 - вентиль «Слив СТР»; 10 - отсечной вентиль; начиная с фиг.2-5: 11, 12 - магистрали заправщика; 13,…18 - вентили заправщика; 19 - емкость заправщика; 20 - источник сжатого воздуха (газа); 21 - вакуумный насос; 22 - смотровое окно).

Фиг.1 - принципиальная схема СТР после сборки ее на конструкции КА (жидкостный тракт заполнен сухим газом):

- до начала промывки ее жидкостного тракта чистым растворителем - изооктаном;

- или после вакуумной сушки перед проверкой жидкостного тракта на герметичность.

Фиг.2 - принципиальная схема СТР с заправщиком после заполнения ее отвакуумированного жидкостного тракта деаэрированным изооктаном и в процессе промывки жидкостного тракта прокачкой изооктана ЭНА СТР или ЭНА заправщика (соответствующие вентили 8, 9, 10, 13,…18 открыты или закрыты; для обеспечения компенсации температурного изменения объема изооктана из жидкостной полости гидроаккумулятора слита доза теплоносителя - сильфон находится в промежуточном положении).

Фиг.3 - принципиальная схема СТР с заправщиком после слива изооктана из жидкостного тракта СТР в емкость заправщика продувкой сжатым воздухом давлением выше атмосферного до отсутствия на выходе из СТР жидкой фазы изооктана (контроль, например, визуально через смотровое окно 22) - сильфон сжат и жидкостная полость гидроаккумулятора полностью заполнена жидким изооктаном - это до 30% объема жидкостного тракта СТР.

Фиг.4 - принципиальная схема СТР с заправщиком после измерения температуры гидроаккумулятора 6.5 и отвакууммирования емкости заправщика и далее через нее - жидкостного тракта СТР до абсолютного давления (например, до 0,6 кгс/см2), равного упругости насыщенных паров двухфазной рабочей жидкости гидроаккумулятора (например, 0,75 кгс/см) минус значение максимальной жесткости сильфона при его полном растяжении (например, 0,15 кгс/см2): вентили 9 и 10 - открыты; вентиль 8 - закрыт; вентили 13, 17 - открыты; вентили 14, 15, 16, 18 - закрыты - в результате пониженного давления в жидкостном тракте сильфон гидроаккумулятора растягивается и выдавливает изооктан из жидкостной полости в остальную часть жидкостного тракта и частично - в емкость заправщика.

Фиг.5 - принципиальная схема СТР с заправщиком после дополнительной продувки сжатым воздухом (в частности, при открытых вентилях 8, 9, 10) жидкостного тракта СТР до отсутствия жидкостной фазы изооктана па выходе из жидкостного тракта СТР (и перед началом вакуумной сушки жидкостного тракта незначительное количество (не более (2-5)%) жидкой фазы изооктана имеется только в жидкостной полости гидроаккумулятора) и перед вакуумной сушкой и далее - вакуумная сушка и полное удаление остатков жидкой фазы изооктана из жидкостного тракта осуществляется за более короткий промежуток времени (например, как показывают опытные работы, не более 4 часов вместо ≈ 6-9 часов).

Следует заметить, что, при необходимости, операции фиг.4 и 5 можно повторить и продолжительность вакуумной сушки жидкостного тракта будет еще короче.

Таким образом, как следует из вышеизложенного, в результате изготовления СТР КА согласно предложенному авторами техническому решению обеспечивается практически полный слив жидкого изооктана из жидкостного тракта перед его вакуумной сушкой и сокращается цикл осуществления вакуумной сушки, т.е. тем самым достигается цель изобретения.

Похожие патенты RU2481255C2

название год авторы номер документа
СПОСОБ КОНТРОЛЯ КАЧЕСТВА ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2011
  • Халиманович Владимир Иванович
  • Лавров Виктор Иванович
  • Колесников Анатолий Петрович
  • Легостай Игорь Васильевич
  • Акчурин Георгий Владимирович
  • Марченко Игорь Анатольевич
  • Вшивков Александр Юрьевич
  • Шутов Дмитрий Вадимович
  • Акчурин Владимир Петрович
RU2486109C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЖИДКОСТНОГО ТРАКТА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Халиманович Владимир Иванович
  • Загар Олег Вячеславович
  • Колесников Анатолий Петрович
  • Акчурин Георгий Владимирович
  • Кривов Евгений Владимирович
  • Кульков Алексей Александрович
  • Воловиков Виталий Гавриилович
  • Голованов Юрий Матвеевич
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
RU2398718C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2011
  • Халиманович Владимир Иванович
  • Лавров Виктор Иванович
  • Колесников Анатолий Петрович
  • Цивилев Иван Николаевич
  • Попов Алексей Викторович
  • Шайбин Артем Олегович
  • Ганенко Сергей Алексеевич
  • Акчурин Георгий Владимирович
  • Акчурин Владимир Петрович
RU2485027C2
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2008
  • Халиманович Владимир Иванович
  • Акчурин Владимир Петрович
  • Алексеев Николай Григорьевич
  • Воловиков Виталий Гавриилович
  • Загар Олег Вячеславович
  • Колесников Анатолий Петрович
  • Кривов Евгений Владимирович
  • Кульков Алексей Александрович
  • Сергеев Юрий Дмитриевич
  • Скороходов Даниил Игоревич
  • Убиенных Александр Вячеславович
  • Цивилев Иван Николаевич
  • Шилкин Олег Валентинович
  • Юртаев Евгений Владимирович
RU2374149C1
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2013
  • Халиманович Владимир Иванович
  • Головенкин Евгений Николаевич
  • Сорокваша Геннадий Григорьевич
  • Колесников Анатолий Петрович
  • Анкудинов Александр Владимирович
  • Акчурин Георгий Владимирович
  • Воловиков Виталий Гавриилович
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
RU2538828C2
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2011
  • Халиманович Владимир Иванович
  • Лавров Виктор Иванович
  • Колесников Анатолий Петрович
  • Цивилев Иван Николаевич
  • Попов Алексей Викторович
  • Шайбин Артем Олегович
  • Ганенко Сергей Алексеевич
  • Акчурин Георгий Владимирович
  • Акчурин Владимир Петрович
RU2489330C2
СПОСОБ КОНТРОЛЯ КОЛИЧЕСТВА ТЕПЛОНОСИТЕЛЯ В ЖИДКОСТНОМ ТРАКТЕ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Халиманович Владимир Иванович
  • Загар Олег Вячеславович
  • Леканов Анатолий Васильевич
  • Колесников Анатолий Петрович
  • Акчурин Георгий Владимирович
  • Синиченко Михаил Иванович
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
  • Никитин Владислав Николаевич
RU2404089C1
Система терморегулирования космического аппарата 2022
  • Колесников Анатолий Петрович
  • Шилкин Олег Валентинович
  • Бакуров Евгений Юрьевич
  • Кузнецов Анатолий Юрьевич
  • Легостай Игорь Васильевич
  • Акчурин Владимир Петрович
RU2779774C1
СПОСОБ ИСПЫТАНИЙ НА РЕСУРС ГИДРОАККУМУЛЯТОРА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Халиманович Владимир Иванович
  • Загар Олег Вячеславович
  • Леканов Анатолий Васильевич
  • Колесников Анатолий Петрович
  • Акчурин Георгий Владимирович
  • Синиченко Михаил Иванович
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
  • Дмитриев Геннадий Валерьевич
RU2402465C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2010
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Колесников Анатолий Петрович
  • Туркенич Роман Петрович
  • Акчурин Георгий Владимирович
RU2441818C1

Иллюстрации к изобретению RU 2 481 255 C2

Реферат патента 2013 года СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к созданию и эксплуатации систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. После сборки жидкостного тракта (ЖТ) системы терморегулирования на конструкции аппарата для обеспечения качества перед проверкой герметичности ЖТ промывают чистым растворителем (изооктаном). Затем удаляют растворитель путем продувки ЖТ сжатым воздухом, после чего проводят вакуумную сушку ЖТ. Для обеспечения полноты слива изооктана перед вакуумной сушкой ЖТ измеряют температуру гидроаккумулятора и кратковременно вакуумируют ЖТ. Вакуум определяется упругостью насыщенных паров рабочей жидкости гидроаккумулятора за вычетом давления, соответствующего максимальной (при полном растяжении) жесткости сильфона гидроаккумулятора. Далее, до начала вакуумной сушки дополнительно продувают ЖТ сжатым воздухом до отсутствия в продуваемом воздухе растворителя па выходе из ЖТ. Технический результат изобретения состоит в обеспечении практически полного удаления растворителя (изооктана) из ЖТ перед вакуумной сушкой. 5 ил.

Формула изобретения RU 2 481 255 C2

Способ изготовления системы терморегулирования космического аппарата, имеющей в своем составе гидроаккумулятор, содержащий разделенные сильфоном газовую полость, частично заполненную рабочей жидкостью, и жидкостную полость, включающий сборку жидкостного тракта системы из комплектующих на конструкции аппарата, заполнение жидкостного тракта чистым растворителем, прокачку его по жидкостному тракту, последующий его слив из жидкостного тракта в емкость заправщика продувкой сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, последующее осуществление вакуумной сушки и проверки герметичности жидкостного тракта помещением аппарата в вакуумную камеру, отличающийся тем, что после фиксирования отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе прекращают продувку его сжатым воздухом и до начала вакуумной сушки измеряют температуру газовой полости гидроаккумулятора, затем кратковременно вакуумируют жидкостный тракт до абсолютного давления, равного упругости насыщенных паров двухфазной рабочей жидкости гидроаккумулятора за вычетом величины максимальной жесткости сильфона при его полном растяжении, после этого дополнительно продувают его сжатым воздухом до отсутствия растворителя на выходе из жидкостного тракта в продуваемом воздухе, после чего начинают вакуумную сушку.

Документы, цитированные в отчете о поиске Патент 2013 года RU2481255C2

СПОСОБ УДАЛЕНИЯ ИЗ ГИДРОМАГИСТРАЛЕЙ НЕСЛИВАЕМЫХ ОСТАТКОВ ТЕПЛОНОСИТЕЛЯ 2005
  • Безруких Алексей Дмитриевич
RU2307774C2
СПОСОБ ЗАПРАВКИ ТЕПЛОНОСИТЕЛЕМ ГИДРОМАГИСТРАЛИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2008
  • Тестоедов Николай Алексеевич
  • Косенко Виктор Евгеньевич
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Данилов Евгений Николаевич
  • Близневский Александр Сергеевич
  • Акчурин Владимир Петрович
  • Алексеев Николай Григорьевич
  • Загар Олег Вячеславович
  • Гупало Виктор Кузьмич
  • Воловиков Виталий Гавриилович
  • Колесников Анатолий Петрович
  • Сергеев Юрий Дмитриевич
  • Трубкин Петр Иванович
  • Туркенич Роман Петрович
  • Шилкин Олег Валентинович
RU2392200C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЖИДКОСТНОГО ТРАКТА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Халиманович Владимир Иванович
  • Загар Олег Вячеславович
  • Колесников Анатолий Петрович
  • Акчурин Георгий Владимирович
  • Кривов Евгений Владимирович
  • Кульков Алексей Александрович
  • Воловиков Виталий Гавриилович
  • Голованов Юрий Матвеевич
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
RU2398718C1
РАБОЧИЙ ОРГАН МАШИНЫ ДЛЯ СРЕЗАНИЯ КУСТАРНИКА И ПОРОСЛИ 2007
  • Царев Евгений Михайлович
  • Репина Ксения Александровна
RU2332839C1
US 6626231 B2, 30.09.2003
СПОСОБ ПОИСКА И РЕГИСТРАЦИИ СПЕКТРОВ ЯДЕРНОГО КВАДРУПОЛЬНОГО РЕЗОНАНСА 2006
  • Осокин Дмитрий Яковлевич
  • Хуснутдинов Рустем Рауфович
RU2333475C1

RU 2 481 255 C2

Авторы

Халиманович Владимир Иванович

Лавров Виктор Иванович

Колесников Анатолий Петрович

Акчурин Георгий Владимирович

Афонин Сергей Сергеевич

Танасиенко Федор Владимирович

Рудько Александр Александрович

Анкудинов Александр Владимирович

Акчурин Владимир Петрович

Даты

2013-05-10Публикация

2011-08-05Подача