Изобретение относится к космической технике и предназначено для использования при изготовлении систем терморегулирования (СТР) космических аппаратов (КА), содержащих общие замкнутые циркуляционные жидкостные контуры для модуля полезной нагрузки (МЛН) и модуля служебных систем (МСС).
Известны такие СТР КА, например, согласно патенту RU 2237600 [1], который (см. фиг.1) включает в себя общий циркуляционный контур для МПН 1 и МСС 2 и содержит: 2.1 - вентиль отсечной; 2.2 -вентиль «ЗАПРАВКА» («НАДДУВ»); 2.3 - вентиль «СЛИВ» («ДРЕНАЖ»); 1.4 - гидромуфты; 2.6 - компенсатор объема; 2.7 - электронасосный агрегат; 2.8 - клапан-регулятор для поддержания температуры работающих приборов, установленных на приборных панелях 2.10, 1.5, 1.6, в более узком диапазоне, чем температуры приборов, установленных на панелях радиаторов 2.9, установленных в вертикальных плоскостях, перпендикулярных к осям +Z и -Z КА; 2.10 - байпасная линия. В настоящее время для мощных КА высота панелей радиаторов 2.9 равна 3-6 м и на них расположены (или встроены) равномерно расположенные вертикальные коллекторы, например, по 10 штук на каждой панели радиатора "+Z" и "-Z", объединенные в один целый жидкостный тракт U-образными переходниками (см. фиг.3, где 2.9.1-2.9.10 - коллекторы; 2.9.11 - U-образные переходники).
В процессе изготовления СТР перед проверкой герметичности жидкостный контур заполняют и промывают чистым растворителем, например изооктаном (например, согласно патенту RU 2307774), затем из жидкостного контура его сливают (при этом при закрытом вентиле 2.1 и промежуточном положении регулирующего органа клапана-регулятора 2.8 на вход вентиля 2.2 подают допустимое избыточное давление газа и через вентиль 2.3 сливают растворитель (в заправщик) и далее продувают сжатым газом до почти полного удаления (например, до 95%, что контролируют измерением слитого объема растворителя) жидкой фазы и далее осуществляют вакуумную сушку жидкостного контура до отсутствия жидкого конденсата растворителя на выходе из СТР.
Однако, как показал опыт, в процессе слива растворителя из жидкостного контура СТР, который в составе панелей радиаторов содержит повышенное количество коллекторов (по 10 штук в каждой панели радиатора "+Z" и "-Z") с увеличенной вертикальной размерностью (H=3-6 м), при допустимом для СТР рабочем избыточном давлении сухого газа на входе (например, ≈0,5 ати ≈50 кПа) в вентиль 2.2 не обеспечивается (см. фиг.2) продувка линий радиаторов газом, и в них остается до ≈50% растворителя (это около 25% от общего объема в СТР), и, следовательно, в этом случае продолжительность вакуумной сушки существенно возрастет, что с точки зрения технологии изготовления неприемлемо.
Таким образом, существенными недостатками известного способа изготовления СТР КА на основе [1] в случае его использования, для изготовления СТР КА с вертикально расположенными с длинноразмерными коллекторами является недостаточная технологичность изготовления СТР, обуславливающая увеличение продолжительности изготовления ее.
Целью предложенного технического решения является устранение вышеуказанных существенных недостатков.
Поставленная цель достигается тем, что в способе изготовления СТР КА, содержащем жидкостный циркуляционный контур с вертикально расположенными последовательно соединенными жидкостными коллекторами и с байпасной им линией с установленным на их входе клапаном-регулятором, включающем предварительную заправку его жидким теплоносителем (растворителем) для наземных испытаний, а затем слив его продувкой сухим газом для последующей вакуумной сушки контура, причем слив теплоносителя из вертикально расположенных последовательно соединенных жидкостных коллекторов продувкой сухим газом осуществляют в последнюю очередь, для чего первоначально обеспечивают продувку всего жидкостного тракта, минуя коллекторы панелей радиаторов, переложив клапан-регулятор в соответствующее положение, а затем - в последнюю очередь перед вакуумной сушкой, переложив клапан-регулятор в другое крайнее положение, продувают с допустимым рабочим давлением газа вертикально расположенные коллекторы радиаторов до полного удаления из всего контура жидкости, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.
В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого изобретения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе изготовления системы терморегулирования космического аппарата.
Авторами было проведено комплексное (теоретическое и опытное) исследование такого явления блокировки растворителя (теплоносителя) в коллекторах радиаторов в количестве до ≈50% от их суммарного объема и установлено, что это обусловлено из-за нестабильного расхода продуваемого воздуха в линиях трактов ввиду продувки одновременно (в прототипе) по двум неравноценным гидравлически (вертикальным 2.9 и горизонтальным 2.10) параллельным трактам 2.9 и 2.10 из-за промежуточного положения клапана-регулятора и из-за сложных: горизонтально расположенных параллельно-последовательных трактов 1.5-1.6 впереди (до) трактов радиаторов 2.9, где (поз.1.5 и 1.6) до 50-60% объема теплоносителя от суммарного объема в СТР (см. фиг.2, где изображены продуваемые газом вертикальные коллекторы - условно три витка из 10, образованные ими:
Рвх - избыточное давление газа на входе, Па;
ΔHi - разность высот жидкости в соседних коллекторах, м;
ΔPi - разность гидравлического давления в витках, Па;
P1, Р2, Р3 - давления в витках на границах раздела жидкость - парогазовая смесь:
1. Условия гидростатического равновесия (отсутствия движения жидкости) для каждого витка
1ый виток:
Pвх-P1=ΔP1=ΔH1·ρ·q
где ρ - плотность жидкости, кг/м3;
q - ускорение силы тяжести нормальное (9,81 м/с2);
2ой виток:
Р1-Р2=ΔР2=ΔН2·ρ·q;
3ий виток:
Р2-Р3=ΔР3=ΔH3·ρ·q; и так далее;
10ый виток (рассмотрим для примера 10 витков):
Р9-P10=ΔР10=ΔH10·ρ·q.
2. Сложив левые и правые части выражений п.1 для случая, когда ΔHi=idem, получаем следующее условие равновесия - условие блокировки жидкости в коллекторах радиаторов:
Pвх-P10=(ΔH1+ΔH2+ΔH3+…+ΔH10)· ρ·q=ΔH·10·ρ·q.
Допустим, что на выходе избыточное давление равно нулю (атмосферное давление), а на входе - Рвх=50000 Па. Тогда высота столба жидкости в каждом витке получается равной
т.е. получается, что допустимое давление газо-жидкостной смеси (из-за одновременной продувки в промежуточном положении клапана-регулятора) на входе обеспечивает продувку коллекторов, если в них столб жидкости не превышает 0,7 м.
3. В то же время, если обеспечить непрерывное удаление жидкости из коллекторов, подачей на вход только газа (предложение авторов) - тогда столбы жидкости в соседних коллекторах взаимно уравновешиваются и допустимое давление обеспечивает продувку жидкости из 10 коллекторов с высотой в каждом
Таким образом, для обеспечения качественной продувки жидкости из коллекторов радиаторов без образования в них блокировки необходимо первоначально обеспечить продувку всего жидкостного тракта, минуя коллекторы панелей радиаторов, переложив клапан-регулятор в соответствующее положение (при этом ≈50% объема теплоносителя сливается сплошным потоком, а остальные 50% - в виде газожидкостного потока, а в конце - в виде газа), а затем - в последнюю очередь, переложив клапан-регулятор в другое крайнее положение, продуть коллекторы радиаторов до полного удаления (см. фиг.3) из СТР жидкости.
Согласно вышеуказанному предложенному авторами техническому решению проведены опытные работы по сливу теплоносителя-растворителя из жидкостного контура с вертикально расположенными коллекторами (по 10 шт.) в радиаторах и установлено, что при продувке их с допустимым рабочим избыточным давлением на входе, равным 50 кПа, гидравлическая блокировка жидкостного контура в радиаторах отсутствовала и происходила свободная продувка жидкости до полного удаления их перед вакуумной сушкой жидкостного контура СТР, т.е. тем самым обеспечивалось достижение цели изобретения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2011 |
|
RU2481255C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЖИДКОСТНОГО КОНТУРА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2014 |
|
RU2574104C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЖИДКОСТНОГО ТРАКТА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2009 |
|
RU2398718C1 |
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2010 |
|
RU2447000C2 |
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2015 |
|
RU2648519C2 |
СПОСОБ КОМПОНОВКИ КОСМИЧЕСКОГО АППАРАТА | 2007 |
|
RU2369537C2 |
СПОСОБ КОНТРОЛЯ КАЧЕСТВА ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2011 |
|
RU2486109C2 |
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2011 |
|
RU2489330C2 |
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2018 |
|
RU2698967C1 |
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ | 2000 |
|
RU2191359C2 |
Изобретение относится к системам терморегулирования (СТР) мощных телекоммуникационных спутников, содержащим многочисленные (до 10) вертикально расположенные последовательно соединенные длинноразмерные (~3-6 м) коллекторы. Согласно изобретению, жидкостный контур СТР для наземных испытаний заправляют жидким теплоносителем, в частности растворителем. Затем этот теплоноситель сливают продувкой воздухом до его полного удаления перед вакуумной сушкой. Последняя предшествует заправке СТР штатным теплоносителем. При этом первоначально продувают весь жидкостный тракт, минуя (с помощью клапана-регулятора байпасной линии) указанные вертикально расположенные коллекторы панелей радиаторов. Продувку данных коллекторов осуществляют в последнюю очередь (переводя клапан-регулятор в другое положение). Техническим результатом изобретения является повышение технологичности СТР и сокращение времени продувки при сливе теплоносителя. 3 ил.
Способ изготовления системы терморегулирования космического аппарата, содержащей жидкостный циркуляционный контур с вертикально расположенными последовательно соединенными жидкостными коллекторами и с байпасной им линией с установленным на их входе клапаном-регулятором, включающий предварительную заправку его жидким теплоносителем (растворителем) для наземных испытаний, а затем слив его продувкой сухим газом для последующей вакуумной сушки контура, отличающийся тем, что слив теплоносителя из вертикально расположенных последовательно соединенных жидкостных коллекторов продувкой сухим газом осуществляют в последнюю очередь, для чего первоначально обеспечивают продувку всего жидкостного тракта, минуя коллекторы панелей радиаторов, переложив клапан-регулятор в соответствующее положение, а затем - в последнюю очередь перед вакуумной сушкой, переложив клапан-регулятор в другое крайнее положение, продувают с допустимым рабочим давлением газа вертикально расположенные коллекторы радиаторов до полного удаления из всего контура жидкости.
СПОСОБ ИЗГОТОВЛЕНИЯ КОСМИЧЕСКОГО АППАРАТА | 2002 |
|
RU2238886C2 |
СПОСОБ УДАЛЕНИЯ ИЗ ГИДРОМАГИСТРАЛЕЙ НЕСЛИВАЕМЫХ ОСТАТКОВ ТЕПЛОНОСИТЕЛЯ | 2005 |
|
RU2307774C2 |
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2002 |
|
RU2237600C2 |
СПОСОБ ОСУШКИ ВНУТРЕННИХ МАГИСТРАЛЕЙ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ | 1999 |
|
RU2170608C1 |
US 4614525 A, 30.09.1986 | |||
US 5415196 A, 16.05.1995 |
Авторы
Даты
2015-01-10—Публикация
2013-04-17—Подача