ВИХРЕВОЙ АППАРАТ С ПРИМЕНЕНИЕМ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ Российский патент 2013 года по МПК B04C5/00 

Описание патента на изобретение RU2482923C1

Изобретение относится к устройствам для очистки аэродисперсных газов от дисперсной фазы и может быть использовано в химической, нефтяной и других отраслях промышленности.

Известен вихревой аппарат, содержащий цилиндрический корпус, в котором расположен циклонный элемент с входным патрубком, выхлопной трубой и разгрузочным отверстием для шлама. Во входном патрубке установлен шнековый закручиватель, образующий с элементами корпуса прямоугольные винтовые каналы с уменьшающимся по ходу движения потока сечением (Патент Швеции №423493, МКИ В04С 5/06, опубл. 10.05.82).

Недостаток этого устройства заключается в низкой эффективности газоочистки в связи с тем, что внутри винтовых каналов образуются застойные зоны, что приводит к забиванию каналов, увеличению гидравлического сопротивления и снижению степени очистки аэродисперсных газов.

Наиболее близким по технической сущности и достигаемому эффекту является вихревой мультициклонный аппарат, содержащий корпус и расположенные в нем циклонные винтовые элементы с выхлопными трубами, разгрузочным отверстием для шлама, завихритель выполнен из внутренней и наружной втулок, образующих круглый винтовой канал с уменьшающимся сечением по ходу потока, с целью уменьшения зарастания каналов отложениями частиц, завихритель выполнен из фторопласта (Авторское свидетельство №1096003 МКП В04С 5/02, опубл. 07.06.84. Бюл. №21, (прототип)).

Недостаток известного вихревого мультициклонного аппарата заключается в сложности конструкции из-за винтовых проточек и совмещения втулок при образовании винтового канала, а также в недостаточной эффективности очистки аэродисперсных газов.

Задачей изобретения является повышение эффективности сепарации аэродисперсных газов за счет снижения гидравлического сопротивления и степени забивания винтовых каналов отложениями дисперсных частиц.

Технический результат, обеспечиваемый изобретением, заключается в интенсификации процесса сепарации аэродисперсных газов.

Указанная задача решается за счет того, что в вихревом аппарате, содержащем корпус, состоящий из винтового закручивающего устройства и трех камер: энергетического разделения, очищенного газа и пылеприемной, выхлопных труб и разгрузочного отверстия для шлама, в отличие от прототипа, в зоне винтового закручивающего устройства установлены магнитострикционные преобразователи, при этом винтовое закручивающее устройство выполнено с двухзаходными каналами с проточками прямоугольного сечения, уменьшающимися по ходу движения потока, в зоне которых смонтированы два магнитострикционных преобразователя, подключенных к генератору ультразвуковых колебаний.

Технический результат, обеспечиваемый вихревым аппаратом с применением ультразвуковых колебаний, выражается в повышении эффективности очистки газов и снижении гидравлического сопротивления устройства. Применение ультразвуковых колебаний при очистке газов позволяет исключить при работе аппарата застойные зоны, что делает невозможным зарастание его внутренних элементов отложениями пыли, это в свою очередь способствует снижению гидравлического сопротивления устройства. Таким образом, создается оптимальный режим работы вихревого аппарата, что дает возможность расширить диапазон устойчивой работы при переменных характеристиках пылегазового потока и повысить производительность и эффективность очистки аэродисперсных газов.

Сущность изобретения поясняется чертежом, на котором изображен поперечный разрез вихревого аппарата с применением ультразвуковых колебаний.

Вихревой аппарат с применением ультразвуковых колебаний в соответствии с чертежом содержит корпус, включающий камеру энергетического разделения 1, внутри которой установлено винтовое закручивающее устройство 2 с диафрагменным каналом для отвода очищенного потока 3, соединенным в верхней по ходу потока части с камерой очищенного газа 4. Над камерой энергетического разделения размещена пылеприемная камера 5, которая снабжена штуцером для подачи входного потока 6. С внешней стороны камеры энергетического разделения расположены два магнитострикционных преобразователя (ПМС - 6-22) 7, снабженные штуцерами для подвода ультразвука от генератора ультразвуковых колебаний (УЗГ 1-4) 8. Для вывода очищенного потока в верхней и нижней части аппарата размещены выходные штуцеры 9 и 10. Отвод скопившегося шлама осуществляется через разгрузочное отверстие для вывода шлама 11. В нижней части аппарата предусмотрено смотровое окно 12 и шламосборник 13.

Вихревой аппарат работает следующим образом.

Аэродисперсная смесь через входной патрубок 6 поступает в каналы винтового закручивающего устройства 2 и под воздействием ультразвука от магнитострикционных преобразователей (ПМС - 6-22) 7 в виде закрученной струи попадает в камеру энергетического разделения 1. Отсепарированная центробежной силой дисперсная фаза под воздействием ультразвука от магнитострикционных преобразователей (ПМС - 6-22) 7 попадает в шламосборник 13, укрупняется и выводится через разгрузочное отверстие 11. Очищенный газ через диафрагменный канал 3 попадает в камеру очищенного газа 4 и удаляется из аппарата через патрубок 10.

Предлагаемая конструкция аппарата за счет использования ультразвуковых колебаний позволяет создать благоприятные условия для эффективного движения дисперсного потока в винтовом закручивающем устройстве, исключает застойные зоны, что приводит к повышению эффективности сепарации и снижению гидравлического сопротивления.

Исследование влияния конструктивных параметров камеры энергетического разделения и винтового закручивающего устройства с применением ультразвука на эффективность сепарации.

Исследования по изучению сепарационных свойств проводились на металлической двухзаходной вихревой трубе D=125·2,5 мм с диаметром по резьбе 175 мм с переменной глубиной нарезки от 10 до 25 мм с шагом нарезки 8,5 мм, условный угол выхода газа α=78°. Наложение ультразвуковых колебаний для очистки газовой смеси проводилось со следующей фиксированной частотой: 18,5; 21,6; 22,1; 23,5 кГц. Лучшие результаты получены при частоте ультразвука 21,6 кГц.

Очищалась аэродисперсная фтало-воздушная парогазовая смесь от дисперсной фазы, при изменении расходов газа 196-250 нм3/ч и дисперсной фазы 0,62-23,0 г/нм3. В результате опытов было установлено, что эффективность сепарации в вихревом аппарате с прямоугольными закручивающими каналами составляет 96%. При этом гидравлическое сопротивление ВЗУ находилось в пределах 50 мм вод. ст.

Эксперименты показали, что наложение ультразвуковых колебаний в процессе газоочистки позволяет исключить забиваемость каналов отложениями дисперсной фазы и повысить эффективность сепарации.

Похожие патенты RU2482923C1

название год авторы номер документа
Центробежный сепаратор 1982
  • Тиманьков Геннадий Михайлович
  • Саракуз Валентин Николаевич
  • Блохин Виктор Иванович
  • Ермаков Владимир Иванович
SU1074609A1
СПОСОБ АГЛОМЕРИРОВАНИЯ ПОРОШКООБРАЗНЫХ СМЕСЕЙ ДЛЯ НАПИТКОВ И АППАРАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Квасенков Олег Иванович
RU2016527C1
СПОСОБ ИНЕРЦИОННОЙ СЕПАРАЦИИ МЕЛКОДИСПЕРСНЫХ ЧАСТИЦ 2009
  • Терехова Ольга Николаевна
  • Еремина Ирина Анатольевна
  • Троцко Сергей Александрович
RU2397827C1
БАРБОТАЖНО-ВИХРЕВОЙ АППАРАТ МОКРОГО ПЫЛЕУЛАВЛИВАНИЯ 2016
  • Кочетов Олег Савельевич
RU2624655C1
БАРБОТАЖНО-ВИХРЕВОЙ АППАРАТ С ПАРАБОЛИЧЕСКИМ ЗАВИХРИТЕЛЕМ ДЛЯ МОКРОЙ ОЧИСТКИ ГАЗА 2017
  • Кочетов Олег Савельевич
RU2664670C1
СПОСОБ АЭРОЦЕНТРОБЕЖНОГО РАЗДЕЛЕНИЯ ПРОДУКТОВ РАЗМОЛА 2006
  • Злочевский Валерий Львович
RU2317155C1
Вихревая труба 1979
  • Кирпиченко Владимир Егорович
  • Успенский Владимир Андреевич
  • Гурьев Владимир Сергеевич
SU879195A2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ГАЗОВ 2002
  • Артамонов Н.А.
  • Тюрикова М.Г.
RU2200616C1
ЦИКЛОН-КЛАССИФИКАТОР 2002
  • Макаренко В.Г.
  • Макаренко М.Г.
  • Борисова Т.В.
  • Сотников В.В.
RU2209122C1
БАРБОТАЖНО-ВИХРЕВОЙ АППАРАТ С ПАРАБОЛИЧЕСКИМ ЗАВИХРИТЕЛЕМ ДЛЯ МОКРОЙ ОЧИСТКИ ГАЗА 2016
  • Кочетов Олег Савельевич
RU2626356C1

Иллюстрации к изобретению RU 2 482 923 C1

Реферат патента 2013 года ВИХРЕВОЙ АППАРАТ С ПРИМЕНЕНИЕМ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ

Изобретение относится к устройствам для очистки газов от механических и газообразных примесей и может быть использовано в химической, нефтяной и других отраслях промышленности. Вихревой аппарат для очистки газа содержит корпус, состоящий из винтового закручивающего устройства и трех камер: энергетического разделения, очищенного газа и пылеприемной, выхлопных труб и разгрузочного отверстия для шлама. Винтовое закручивающее устройство выполнено с двухзаходными каналами с проточками прямоугольного сечения, уменьшающимися по ходу движения потока, в зоне которых смонтированы два магнитострикционных преобразователя, подключенных к генератору ультразвуковых колебаний. Технический результат: интенсификация процесса сепарации аэродисперсных газов, уменьшение гидравлического сопротивления и степени забивания винтовых каналов отложениями пыли. 1 ил.

Формула изобретения RU 2 482 923 C1

Вихревой аппарат для очистки газа, содержащий корпус, состоящий из винтового закручивающего устройства и трех камер: энергетического разделения, очищенного газа и пылеприемной, выхлопных труб и разгрузочного отверстия для шлама, отличающийся тем, что в зоне винтового закручивающего устройства установлены магнитострикционные преобразователи, при этом винтовое закручивающее устройство выполнено с двухзаходными каналами с проточками прямоугольного сечения, уменьшающимися по ходу движения потока, в зоне которых смонтированы два магнитострикционных преобразователя, подключенных к генератору ультразвуковых колебаний.

Документы, цитированные в отчете о поиске Патент 2013 года RU2482923C1

SU 1096003 А, 07.06.1984
Вихревая труба 1987
  • Кирпиченко Владимир Егорович
  • Ицков Федор Эрихович
  • Сафонов Владимир Александрович
  • Летюк Александр Ильич
SU1449792A1
Вихревая труба 1979
  • Кирпиченко Владимир Егорович
  • Успенский Владимир Андреевич
  • Гурьев Владимир Сергеевич
SU879195A2
Устройство для очистки электролита от шлама 1988
  • Мингазетдинов Идгай Хасанович
  • Лебедев Валерий Анатольевич
  • Семаков Лев Алексеевич
SU1562029A1
US 6355178 B1, 12.03.2002
JP 63020051 A, 27.01.1988.

RU 2 482 923 C1

Авторы

Усманова Регина Равилевна

Жернаков Владимир Сергеевич

Панов Александр Константинович

Даты

2013-05-27Публикация

2011-11-29Подача