СПОСОБ МЕТАЛЛИЗАЦИИ СИДЕРИТОВОГО СЫРЬЯ С ПОЛУЧЕНИЕМ ГРАНУЛИРОВАННОГО ЧУГУНА И ЖЕЛЕЗИСТОМАГНЕЗИАЛЬНОГО ШЛАКА Российский патент 2013 года по МПК C21B11/06 C21B13/08 

Описание патента на изобретение RU2483118C1

Изобретение относится к области черной и цветной металлургии и может быть использовано при производстве гранулированного чугуна и комплексного флюса для сталеплавильного производства.

Известен способ металлизации сидеритовой руды во вращающихся трубчатых печах в пересыпающемся рудно-угольно-флюсовом слое с последующим отделением металлизованного продукта магнитной сепарацией от пустой породы и золы топлива [1].

Недостатком данного способа является низкое качество металлизованного продукта. Степень металлизации не превышает 95%, потери железа с хвостами достигают 5,5%, содержание железа в концентрате металлизованного сырья колеблется в пределах от 67 до 95%, при этом рост содержания железа сопровождается увеличением содержания магнезии. Такой механизм объясняется тем, что основными рудными минералами сидеритовых руд являются сидероплезит и пистомезит, которые представляют собой изоморфную смесь карбонатов железа, магния, марганца и частично кальция. Поэтому при обогащении механическим путем невозможно выделить в чистом виде оксиды железа или другого элемента, входящие в кристаллическую решетку минерала, что ограничивает использование металлизованного продукта с высоким содержанием магнезии как в доменном производстве, так и в сталеплавильном производстве вследствие формирования «коротких» шлаков, резко теряющих текучесть при незначительном снижении рабочих температур в агрегатах.

Наиболее близким к предлагаемому решению по технической сущности и достигаемому результату является способ получения гранулированного чугуна в печах с вращающимся подом, включающий дозирование железосодержащего сырья, твердого топлива, связующего и флюсующих добавок, смешивание и окомкование полученной шихты, сушку, металлизацию окатышей, охлаждение, дробление и отделение гранулированного чугуна от шлака [2].

Заложенные температурно-временные параметры термической обработки не охватывают весь спектр минералогических типов железных руд. Например, при обжиге в указанном режиме окатышей из шпатовых (сидеритовые руды) и бурых железняков идет существенное замедление восстановительных процессов из-за спонтанного выделения соответственно углекислого газа и паров воды, кристаллохимически связанных с оксидами железа в отмеченных видах железных руд. В результате снижается степень металлизации, а в окатышах образуется каркас из тугоплавких соединений, что затрудняет отделение чугуна от шлака, приводя к потерям металла.

Задачей изобретения является снижение энергетических затрат и потерь железа в процессе получения гранулированного чугуна за счет оптимизации технологических параметров при термической обработке руднотопливных окатышей из сидеритового сырья.

Поставленная задача решается тем, что в способе металлизации сидеритового сырья с получением гранулированного чугуна и железистомагнезиального шлака, включающем дозирование сидеритового сырья, твердого топлива, связующего и флюсующих добавок, обеспечивающих заданную температуру плавления первичного шлака, смешивание и окомкование полученной шихты, сушку и термическую обработку руднотопливных окатышей, охлаждение, дробление и отделение гранулированного чугуна от шлака, в отличие от ближайшего аналога термическую обработку руднотопливных окатышей осуществляют в два этапа при температурах 560-570°С и 1350-1450°С соответственно, при этом продолжительность первого этапа составляет 10-20% от общей длительности термообработки.

Отличительной особенностью предлагаемого способа является учет химического и минералогического состава сидеритовых руд, содержащих CO2 в карбонатах до 30% и выше. Карбонаты железа (FeCO3), марганца (MnCO3), магния (MgCO3) и кальция (CaCO3), входящие в основные минералы сидероплезит и пистомезит, разлагаются последовательно при температурах химического кипения 360-490, 450-530, 570-650 и 910-925°С соответственно. При этом с той же последовательностью выделяется CO2: 70, 3, 20 и 7% от общего содержания CO2 (30% и выше) соответственно в зависимости от исходного химического состава. Известно [1], что повышение скорости нагрева (даже с 10 до 80°С/мин) сдвигает в область высоких температур температуры начала (до 520-600°С) и конца (>1300°С) диссоциации сидерита (FeCO3), увеличивая продолжительность термообработки из-за наложения процессов диссоциации сидерита на процессы восстановления и металлизации железа, поскольку выделяющийся при диссоциации CO2 снижает восстановительный потенциал газовой фазы.

Разделение процессов диссоциации карбонатов железа и марганца от процесса металлизации железа обеспечивается проведением термической обработки в два этапа: при температурах 560-570°С и 1350-1450°С соответственно.

При этом высокая упругость диссоциации отмеченных оксидов при температурах 560-570°С обеспечивает удаление до 73% содержащегося в сидеритовом сырье CO2 за период, составляющий не более 10-20% от общей продолжительности термической обработки. Предложенная продолжительность термообработки и профиль температур (560-570°С) на первом этапе обеспечивают разложение наименее прочных карбонатов железа и марганца до вюстита (FeO) и закиси марганца (MnO).

Снижение временных и температурных параметров ниже указанных пределов ведет к переводу процесса разложения части карбонатов железа и марганца в зону восстановления и металлизации железа, замедляя ход этих процессов из-за роста окислительного потенциала газовой фазы. Превышение указанных временных и температурных параметров первого этапа термической обработки приводит к снижению производительности агрегата для получения гранулированного чугуна и увеличению энергетических затрат на его производство.

На втором этапе диссоциация карбонатов магния и кальция протекает при высоких температурах (1350-1450°С) с выделением до 27% CO2, который, реагируя с углеродом твердого топлива по реакции CO2+C=2CO при 1000-1100°С образует восстановительный реагент CO. Образовавшаяся CaO после диссоциации карбоната кальция и свежевосстановленное железо являются катализаторами указанной реакции газификации углерода, т.е. наступает явление автокатализа. В этих условиях оксиды железа восстанавливаются, металлизуются, а восстановленное железо науглероживается с высокими скоростями.

Таким образом, предложенные температурно-временные параметры термической обработки руднотопливных окатышей из сидеритового сырья обеспечивают завершенность процессов восстановления железа и в сочетании с необходимым уровнем науглероживания железа позволяют легко разделять чугун от шлака, снижая потери железа.

Предлагаемый способ осуществляется следующим образом.

Известным способом контролируют химический состав компонентов шихты для производства руднотопливных окатышей. Задаются определенным экспериментальным путем расходом твердого топлива и связующего материала. Расчетным путем определяют расход флюсующей добавки, обеспечивающий заданную температуру плавления первичного шлака. Дальнейшее смешивание, окомкование шихты, сушку и термическую обработку окатышей, охлаждение, дробление и отделение гранулированного чугуна от шлака ведут с тем различием, что термическую обработку руднотопливных окатышей из сидеритового сырья осуществляют в два этапа при температурах 560-570°С и 1350-1450°С, при этом продолжительность первого этапа поддерживают в пределах 10-20% от общей длительности термообработки

Исследования по получению гранулированного чугуна из сидеритового сырья (как из сырой сидеритовой руды, так и из концентрата после ее обогащения) проводили в камерной нагревательной печи «Nabertherm», позволяющей контролировать заданный темп нагрева до 1800°С.

Результаты исследований приведены в таблице.

Анализ представленных результатов показывает не только принципиальную возможность получения гранулированного чугуна из сидеритового сырья по предлагаемому решению (А), но и улучшения технико-экономических показателей процесса получения гранулированного чугуна по сравнению с прототипом (Б):

- снизить энергетические затраты на производство гранулированного чугуна;

- увеличить производительность агрегата по производству гранулированного чугуна за счет снижения потерь железа со шлаком и сокращения продолжительности периода восстановления и металлизации железа.

Выход за заявленные пределы ухудшает технико-экономические показатели процесса получения гранулированного чугуна.

Дополнительный эффект получается в сталеплавильном производстве за счет увеличения срока службы футеровки конверторов и ускорения процесса шлакообразования при использовании комплексного флюса, сырьем для которого является железистомагнезиальный шлак, получаемый при производстве гранулированного чугуна из сидеритового сырья.

Источники информации

1. Металлургическая оценка разновидностей сидеритовых руд Бакальского месторождения и разработка вариантов их подготовки к металлургическому переделу. Отчет о НИР. Институт металлургии УО АН СССР. Пастухов Э.А., Леонтьев Л.И., Шаврин С.В., Свердловск, 1990 г., 129 с.

2. O.Tsuge, Sh.Kikuchi, k.Tokuda, Sh.Ito, I.Kobayashi, A.Uragami. Successful iron nugget production at ITmk3 pilot plant. 61-st Ironmaking Conference Proceeding. March 10-13, 2002, Nashvill, Tenn., USA, p.511-519.

Похожие патенты RU2483118C1

название год авторы номер документа
СПОСОБ МЕТАЛЛИЗАЦИИ ЖЕЛЕЗОРУДНОГО СЫРЬЯ С ПОЛУЧЕНИЕМ ГРАНУЛИРОВАННОГО ЧУГУНА 2011
  • Рашников Виктор Филиппович
  • Дубровский Борис Александрович
  • Галкин Виталий Владимирович
  • Панишев Николай Васильевич
  • Князев Эдуард Владимирович
  • Авраменко Виталий Алексеевич
  • Гладских Владимир Иванович
  • Кошкалда Александр Николаевич
  • Борисенко Владимир Анатольевич
  • Гаврилов Александр Владимирович
RU2490332C1
СПОСОБ ПЕРЕРАБОТКИ МЕЛКОЗЕРНИСТЫХ ЦИНКСОДЕРЖАЩИХ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА 2014
  • Рашников Виктор Филиппович
  • Дубровский Борис Александрович
  • Панишев Николай Васильевич
  • Редин Евгений Владимирович
  • Стариков Анатолий Ильич
  • Князев Эдуард Владимирович
  • Сукинова Наталья Васильевна
RU2548840C1
СПОСОБ ПОЛУЧЕНИЯ ОКОМКОВАННОГО МЕТАЛЛУРГИЧЕСКОГО СЫРЬЯ 2011
  • Лунев Владимир Иванович
  • Усенко Александр Иванович
  • Лотов Василий Агафонович
RU2458158C2
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ КОМПЛЕКСНЫХ РУД 2011
  • Рощин Василий Ефимович
  • Рощин Антон Васильевич
  • Рощин Егор Васильевич
RU2460813C1
СПОСОБ МЕТАЛЛИЗАЦИИ ТИТАНОМАГНЕТИТОВЫХ КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ ЖЕЛЕЗНЫХ ГРАНУЛ И ТИТАНОВАНАДИЕВОГО ШЛАКА 2008
  • Макаров Юрий Витальевич
  • Садыхов Гусейнгулу Бахлул Оглы
  • Самойлова Галина Григорьевна
  • Мизин Владимир Григорьевич
RU2399680C2
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОГО ОБОГАЩЕНИЯ КОМПЛЕКСНЫХ ЖЕЛЕЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 1994
  • Ватолин Н.А.
  • Вусихис А.С.
  • Двинин В.И.
  • Леонтьев Л.И.
  • Майзель С.Г.
  • Шаврин С.В.
RU2087542C1
СПОСОБ ПЕРЕРАБОТКИ НЕКОНДИЦИОННЫХ ЖЕЛЕЗО- И ЦИНКСОДЕРЖАЩИХ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА 2009
  • Ульянов Владимир Павлович
  • Дьяченко Виктор Фёдорович
  • Артамонов Александр Петрович
  • Гибадулин Масхут Фатыхович
  • Ульянова Ирина Владимировна
  • Смирнов Александр Сергеевич
RU2404271C1
МЕТАЛЛИЗОВАННЫЙ ФЛЮСУЮЩИЙ ШИХТОВЫЙ МАТЕРИАЛ ДЛЯ ПРОИЗВОДСТВА СТАЛИ 2012
  • Брындин Сергей Александрович
  • Мальков Николай Васильевич
  • Рощин Антон Васильевич
  • Рощин Василий Ефимович
  • Салихов Семен Павлович
RU2509161C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО МЕТАЛЛИЧЕСКОГО ЖЕЛЕЗА 2011
  • Черных Владимир Евгеньевич
  • Вершаль Владимир Владимирович
  • Рыбкин Сергей Георгиевич
RU2497953C2
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ КОМПЛЕКСНЫХ РУД, ОБРАЗОВАННЫХ ТВЕРДЫМИ ОКСИДНЫМИ РАСТВОРАМИ ИЛИ ОКСИДНЫМИ ХИМИЧЕСКИМИ СОЕДИНЕНИЯМИ 2012
  • Рощин Василий Ефимович
  • Рощин Антон Васильевич
RU2507277C1

Реферат патента 2013 года СПОСОБ МЕТАЛЛИЗАЦИИ СИДЕРИТОВОГО СЫРЬЯ С ПОЛУЧЕНИЕМ ГРАНУЛИРОВАННОГО ЧУГУНА И ЖЕЛЕЗИСТОМАГНЕЗИАЛЬНОГО ШЛАКА

Изобретение относится к области металлургии и может быть использовано при производстве гранулированного чугуна и комплексного флюса для сталеплавильного производства. Изобретение решает задачу повышения эффективности производства гранулированного чугуна из сидеритового сырья за счет оптимизации технологических параметров термической обработки руднотопливных окатышей. Технический результат - увеличение производительности агрегата для производства гранулированного чугуна, снижение потерь железа и энергетических затрат при производстве металлизованного продукта из сидеритового сырья. Способ включает дозирование сидеритового сырья, твердого топлива, связующего и флюсующих добавок, смешивание и окомкование полученной шихты, сушку и термическую обработку окатышей в печи с вращающимся подом, охлаждение, дробление и отделение гранулированного чугуна от шлака. Термическую обработку окатышей из сидеритового сырья ведут в два этапа при температурах 560-570°С и 1350-1450°С соответственно, при этом продолжительность первого этапа составляет 10-20% от общей длительности термообработки. 1 табл.

Формула изобретения RU 2 483 118 C1

Способ металлизации сидеритового сырья с получением гранулированного чугуна и железистомагнезиального шлака, включающий дозирование сидеритового сырья, твердого топлива, связующего и флюсующих добавок с обеспечением заданной температуры плавления первичного шлака, смешивание и окомкование полученной шихты, сушку и термическую обработку руднотопливных окатышей, охлаждение, дробление и отделение гранулированного чугуна от упомянутого шлака, отличающийся тем, что термическую обработку руднотопливных окатышей осуществляют в два этапа при температурах 560-570°С и 1350-1450°С соответственно, при этом продолжительность первого этапа составляет 10-20% от общей длительности термообработки.

Документы, цитированные в отчете о поиске Патент 2013 года RU2483118C1

TSUGE О
et al
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Способ производства чугуна или стальных полупродуктов из железосодержащих кусковых материалов 1988
  • Вернер Кепплингер
  • Гюнтер Кольб
  • Эрих Оттеншлегер
  • Вильхельм Шиффер
  • Карл Фальтейсек
SU1641194A3
Способ обжига сидеритовых руд и шахтная печь для его осуществления 1985
  • Бланк Михаил Эммануилович
  • Неряхин Николай Васильевич
  • Медведев Алексей Иванович
  • Пермяков Гавриил Алексеевич
  • Морозов Валерий Александрович
  • Жунев Александр Григорьевич
  • Червоткин Вениамин Васильевич
  • Боковиков Борис Александрович
SU1315478A1
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОГО ОБОГАЩЕНИЯ КОМПЛЕКСНЫХ ЖЕЛЕЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 1994
  • Ватолин Н.А.
  • Вусихис А.С.
  • Двинин В.И.
  • Леонтьев Л.И.
  • Майзель С.Г.
  • Шаврин С.В.
RU2087542C1

RU 2 483 118 C1

Авторы

Рашников Виктор Филиппович

Дубровский Борис Александрович

Галкин Виталий Владимирович

Панишев Николай Васильевич

Князев Эдуард Владимирович

Авраменко Виталий Алексеевич

Гладских Владимир Иванович

Кошкалда Александр Николаевич

Борисенко Владимир Анатольевич

Гаврилов Александр Владимирович

Даты

2013-05-27Публикация

2011-12-05Подача