СПОСОБ ЛОКАЛЬНОГО ИЗМЕРЕНИЯ КОЭРЦИТИВНОЙ СИЛЫ ФЕРРОМАГНИТНЫХ ОБЪЕКТОВ Российский патент 2013 года по МПК G01N27/72 

Описание патента на изобретение RU2483301C1

Изобретение относится к области измерений магнитных свойств ферромагнитных объектов для неразрушающего контроля их прочностных, пластических или иных эксплуатационных характеристик.

Магнитные свойства ферромагнетиков принято разделять на свойства тела и свойства вещества. Свойства тела зависят от формы и размеров ферромагнетиков и определяются в разомкнутой магнитной цепи по измеряемым значениям намагниченности М и внешнего магнитного поля He. Свойства вещества не зависят от формы и размеров ферромагнетика и определяются по измеряемым значениям намагниченности и внутреннего магнитного поля Hi.

Коэрцитивная сила, измеряемая в разомкнутой магнитной цепи, практически не зависит от формы и размеров ферромагнетиков и усредняется по всему объему ферромагнетика, что не позволяет оценивать возможные неоднородности, в частности упрочненные слои [Щербинин В.Е., Горкунов Э.С. Магнитный контроль качества металлов. - Екатеринбург: УрО РАН, 1996, - 264 с.]

Наиболее часто измерения коэрцитивной силы ферромагнитных объектов проводят при помощи приставных преобразователей. Общепринятой мерой коэрцитивной силы служит величина размагничивающего тока в обмотках электромагнита при нулевом потоке в цепи "преобразователь - изделие" [Бида Г.В., Ничипурук А.П. Коэрцитиметрия в неразрушающем контроле. - Дефектоскопия, 2000, №10, с.3-28]. В некоторых случаях коэрцитивную силу оценивают по показаниям измерительного преобразователя магнитного поля, располагаемого в нейтральной плоскости П-образного электромагнита [Ульянов А.И., Захаров В.А., Мерзляков Э.Ф., Воронов С.А. Приставное устройство коэрцитиметра [Патент РФ №2035745].

Наличие и непостоянство зазора в составной магнитной цепи "измерительный преобразователь - изделие" оказывает существенное влияние на результаты локального измерения коэрцитивной силы контролируемых объектов [Бида Г.В. Влияние зазора между полюсами приставного электромагнита и контролируемой деталью на показания коэрцитиметра и способы его уменьшения. - Дефектоскопия, 2010, №11, с.62-81]. Кроме того, на результаты измерения коэрцитивной силы с помощью приставных преобразователей оказывают влияние также форма и размеры контролируемых объектов [Бида Г.В., Ничипурук А.П. Коэрцитиметрия в неразрушающем контроле. - Дефектоскопия, 2000, №10, с.3-28]. Таким образом, требуются меры для снижения соответствующих погрешностей и повышения достоверности измерений.

Уровень техники в данной области может быть охарактеризован следующими известными способами измерения коэрцитивной силы ферромагнитных объектов.

Известен способ измерения коэрцитивной силы феррозондовым коэрцитиметром [Патент РФ №2139550], включающий размещение на контролируемом участке объекта П-образного магнитопровода (содержащего намагничивающую и размагничивающую обмотки) с образованием составной магнитной цепи с зазором, намагничивание образца намагничивающей обмоткой до состояния технического насыщения, размагничивание объекта размагничивающей обмоткой и включенной встречно ей компенсационной обмоткой, установленной на феррозонде, до момента размагничивания объекта, определяемого феррозондом и измерение в этот момент величины тока размагничивания, по которому судят о величине коэрцитивной силы.

Влияние величины зазора между полюсами магнитопровода и изделием компенсируется подбором величины напряжения смещения и параметрами компенсирующей обмотки, создающей магнитный поток, противоположный размагничивающему.

Недостаток указанного способа заключается в том, что он может быть использован только для компенсации влияния постоянного зазора. Изменение зазора требует нового определения необходимого напряжения смещения и параметров компенсирующей обмотки. Для компенсации влияния изменяющегося неконтролируемого зазора этот способ не может быть использован.

Известен способ измерения коэрцитивной силы объекта коэрцитиметром [Патент РФ №2035745], включающий размещение на контролируемом участке объекта П-образного магнитопровода с перемагничивающей обмоткой, для образования составной магнитной цепи с зазором. Намагничивание образца до состояния технического насыщения и размагничивание его путем плавного увеличения, снижения и изменения полярности тока, и последующего измерения напряженности магнитного поля двумя преобразователями магнитного поля, расположенными в нейтральной плоскости магнитопровода так, что их оси чувствительности перпендикулярны указанной плоскости, по величине напряженности магнитного поля судят о величины коэрцитивной силы.

Недостаток этого способа заключается в том, что он может быть реализован только при использовании П-образных электромагнитов. Однако при контроле изделий с большой площадью поперечного сечения вследствие рассеяния магнитного потока объект вблизи нейтральной плоскости будет намагничиваться очень слабо [Михеев М.Н. Топография магнитной индукции в изделиях при локальном намагничивании их приставным электромагнитом. - Известия АН СССР, 1948, №3-4, с.68-77]. Таким образом, показания будут зависеть от размеров контролируемых объектов. Наличие зазора дополнительно ослабляет намагничивание и существенные изменения зазора оказывают влияние на результат измерения. Таким образом, указанный способ не может полностью решить задачу компенсации влияния зазора, а также формы и размеров объектов контроля на результат измерения. Дополнительным недостатком этого способа является сложность конструкции приставного преобразователя.

Наиболее близким к заявляемому способу по последовательности осуществляемых операций является способ измерения коэрцитивной силы ферромагнитных объектов [Патент РФ №2024889], включающий намагничивание образца до насыщения однородным магнитным полем одной полярности, последующее размагничивание образца однородным магнитным полем другой полярности с помощью соленоида, измерение тангенциальной составляющей напряженности магнитного поля вблизи центрального сечения образца и фиксацию напряженности магнитного поля при нулевом значении тангенциальной составляющей напряженности магнитного поля, по которой судят о величине коэрцитивной силы.

Указанный способ реализуется в открытой магнитной цепи. Этим способом определяется коэрцитивная сила, усредненная по всему объему объекта, что не позволяет обнаруживать возможную неоднородность его свойств (изменение структуры по объему, наличие и свойства упрочненных слоев и т.д.). Еще один существенный недостаток этого способа заключается в ограничении форм и размеров контролируемых объектов размерами используемого соленоида. Кроме того, указанному способу присущи такие недостатки магнитных измерений в открытой цепи, как трудность создания однородного магнитного поля в достаточном объеме, трудность намагничивания до насыщения объектов с большим коэффициентом размагничивания, неоднородное намагничивание объектов конечных размеров и влияние на результат измерений внешних магнитных полей [Чечерников В.И. Магнитные измерения. - М.: Изд-во МГУ, 1969. - 387 с.]. Таким образом, указанный способ не позволяет проводить локальные измерения коэрцитивной силы массивных ферромагнитных объектов и определять неоднородность их свойств.

В основу изобретения положена задача повышения достоверности локального измерения коэрцитивной силы контролируемых объектов путем снижения погрешности, обусловленной наличием и непостоянством зазора в составной магнитной цепи "преобразователь - объект", и расширения функциональных возможностей способа за счет уменьшения влияния формы и размеров объектов.

Поставленная задача решается тем, что в способе локального измерения коэрцитивной силы ферромагнитных объектов, включающем намагничивание объекта, последующее его размагничивание, измерение напряженности магнитного поля и тангенциальной составляющей магнитного поля согласно изобретению на контролируемый локальный участок объекта размещают электромагнит, с образованием составной магнитной цепи "преобразователь - объект" с зазором, в момент намагничивания измеряют максимальную величину магнитного потока, отключают внешнее магнитное поле и измеряют величину тангенциальной составляющей магнитного поля на поверхности контролируемого участка, затем участок размагничивают до достижения нулевого магнитного потока в цепи и измеряют величину размагничивающего тока и тангенциальной составляющей магнитного поля, по результатам измерений которых судят о величине коэрцитивной силы.

При этом магнитный поток в цепи измеряют датчиком Холла, расположенным в отверстии, выполненном в магнитопроводе и представляющем собой щель с плоскопараллельными стенками, перпендикулярными направлению магнитного потока.

Вместе с тем, тангенциальную составляющую магнитного поля измеряют в межполюсном пространстве электромагнита вблизи поверхности контролируемого объекта, где сигнал пропорционален внутреннему магнитному полю в объекте.

Кроме того, составную магнитную цепь "преобразователь - объект" с зазором образуют с использованием П-образного или цилиндрического электромагнита.

Анализ результатов измерений и суждение о величине коэрцитивной силы объекта производится различными методами, которые позволяют учесть особенности измеряемого объекта и особенности измерительной цепи.

В частности, используются суждения с учетом взаимозависимостей физических свойств, когда:

- по результатам измерений размагничивающего тока судят о величине коэрцитивной силы усредненной по промагничиваемому объему;

- по результатам измерений тангенциальной составляющей магнитного поля судят о величине коэрцитивной силы приповерхностного слоя объекта.

Также используются суждения с применением математических методов коррекции, когда:

- о величине коэрцитивной силы с учетом влияния величины зазора судят по формуле:

Hc01·EHc2·EФmax, где

Hc - истинное значение коэрцитивной силы;

EHc - значение сигнала, соответствующего коэрцитивной силе;

EФmax - значение сигнала, соответствующего максимальному потоку в магнитной цепи;

А0, A1 и А2 - коэффициенты, которые зависят от конфигурации магнитной цепи "преобразователь - объект" и их точные значения устанавливаются при градуировке коэрцитиметра;

- о величине коэрцитивной силы с учетом влияния размеров и формы объекта судят по формуле:

где

Hc - истинное значение коэрцитивной силы;

EHc - значение сигнала, соответствующего коэрцитивной силе;

- значение сигнала, соответствующего тангенциальной составляющей магнитного поля на поверхности контролируемого участка объекта, измеряемое после отключения намагничивающего поля;

B0, B1 и В2 - коэффициенты, которые зависят от конфигурации магнитной цепи "преобразователь - объект" и их точные значения устанавливаются при градуировке коэрцитиметра.

Работоспособность предлагаемого способа основывается на следующих физических принципах.

При локальном намагничивании ферромагнитных объектов электромагнитом (П-образным, двухполюсным цилиндрическим или иным), который составляет с контролируемым участком объекта составную замкнутую магнитную цепь, магнитные измерения аналогичны измерениям при помощи пермеаметра [Чечерников В.И. Магнитные измерения. - М.: Изд-во МГУ, 1969. - 387 с.]. Если в такой цепи отсутствует рассеивание магнитного потока или оно мало, то оказывается возможным локальное определение целого комплекса магнитных свойств вещества, в том числе коэрцитивной силы [Костин В.Н., Царькова Т.П., Сажина Е.Ю. Измерение относительных значений магнитных свойств вещества контролируемых изделий в составных замкнутых цепях. - Дефектоскопия, 2001, №1, с.15-26]. Зазор в составной цепи приводит к появлению магнитных полюсов на разомкнутых гранях, которые оказывают действие, подобное действию магнитных полюсов на торцах ферромагнетика конечных размеров в открытой магнитной цепи. Влияние зазора на результат измерений можно скомпенсировать, если определить величину имеющегося зазора по дополнительно измеряемому параметру.

По мере увеличения зазора магнитное сопротивление цепи "преобразователь - объект" растет, а величина магнитного потока падает. В целом магнитный поток в составной цепи зависит от конфигурации приставного электромагнита, формы и размеров намагничиваемого объекта, приложенной магнитодвижущей силы (тока), магнитных свойств объекта и величины немагнитного зазора. Для селективной оценки зазора необходимо выбрать такое магнитное состояние, когда магнитный поток в наименьшей степени зависит от магнитных свойств контролируемого объекта. Такое состояние достигается при включении максимального намагничивающего тока. При неизменных геометрических параметрах магнитной цепи и фиксированной величине намагничивающего тока получающаяся величина магнитного потока будет зависеть от намагниченности насыщения контролируемого объекта и величины зазора. Поскольку намагниченность насыщения является структурно не чувствительной магнитной характеристикой, которая остается неизменной при многих видах воздействия на ферромагнетик [Щербинин В.Е., Горкунов Э.С. Магнитный контроль качества металлов. Екатеринбург: УрО РАН, 1996, - 264 с.], то величина магнитного потока при максимальном намагничивающем токе будет главным образом зависеть от наличия и величины зазора в составной магнитной цепи. Таким образом, максимальная величина магнитного потока Фmax может быть мерой величины немагнитного зазора в магнитной цепи "преобразователь - изделие". Кроме того, измерение величины Фmax необходимо также для определения степени намагничивания контролируемого объекта, поскольку при малых значениях Фmax контролируемый участок объекта не намагнитится до необходимого технического насыщения и результаты измерений будут недостоверны.

Помимо зазора на результаты измерения коэрцитивной силы оказывает влияние конфигурация составной цепи "преобразователь - объект", которая определяется формой и размерами контролируемых объектов. Компенсация влияния формы и размеров объектов на результат измерения основана на следующем физическом принципе.

Для ферромагнетика конечных размеров при его намагничивании в разомкнутой магнитной цепи соотношение между внешним и внутренним магнитными полями имеет вид:

где N - коэффициент размагничивания [Боровик Е.С., Еременко В.В., Мильнер А.С. Лекции по магнетизму. - М.: Физматлит, 2005. - 510 с.]. Согласно выражению (1) у ферромагнетика конечных размеров, намагничиваемого в разомкнутой магнитной цепи, на нисходящей ветви предельной петли гистерезиса при нулевом значении внешнего магнитного поля (He=0) намагниченность равна остаточной намагниченности тела ( ), а соответствующее этому магнитному состоянию значение внутреннего магнитного поля равно

При нулевом значении внутреннего магнитного поля (Hi=0) намагниченность образца равна остаточной намагниченности вещества (М=Mr), а соответствующее значение внешнего магнитного поля равно

Для остаточной намагниченности вещества из (2) и (3) следует

Таким образом, выражение (4) позволяет определять остаточную намагниченность вещества по остаточной намагниченности тела. При этом первое слагаемое в (4) определяет влияние размеров и формы объектов на результат магнитных измерений.

Параметры и должны характеризовать конфигурацию как открытой, так и составной магнитной цепи "преобразователь - объект". Предпочтительным является измерение параметра . Экспериментальные исследования показали, что учет этого параметра позволяет существенно снизить погрешность измерения коэрцитивной силы, связанную с различием формы и размеров испытуемых объектов. При этом значение определяется по величине тангенциальной составляющей магнитного поля на поверхности контролируемого участка объекта , измеряемой после отключения намагничивающего тока в обмотках электромагнита и до подачи размагничивающего тока.

Способ поясняется чертежами.

На фиг.1 схематически представлена составная магнитной цепь "преобразователь - объект" с зазором с использованием П-образного электромагнита.

На фиг.2 приведены зависимости измеренных с помощью приставного преобразователя характеристик EHc и EФmax для образцов из стали 7Х3.

На фиг.3 приведены зависимости измеренной с помощью приставного преобразователя характеристики EHc от коэрцитивной силы объектов различных размеров и формы.

На фиг.4 схематически представлена составная магнитной цепь "преобразователь - объект" с зазором с использованием цилиндрического электромагнита.

Способ осуществляется следующим образом.

Для измерений используют приставной преобразователь 1, представляющий собой П-образный электромагнит, состоящий из магнитопровода 2 и обмоток 3 (Фиг.1). В магнитопроводе 2 электромагнита выполнено отверстие-преобразователь 4, представляющее собой щель с плоскопараллельными стенками, перпендикулярными направлению магнитного потока, специальная форма которого обеспечивает пропорциональность между напряженностью магнитного поля в отверстии 4 и величиной магнитного потока в магнитопроводе 2 [Костин В.П., Царькова Т.П., Сажина Е.Ю. Измерение относительных значений магнитных свойств вещества контролируемых изделий в составных замкнутых цепях. - Дефектоскопия, 2001, №1, с.15-26]. Магнитное поле в отверстии 4 измеряют с помощью малогабаритного датчика 5 поля (датчик Холла). Поскольку магнитный поток из магнитопровода 2 практически полностью переходит в объект 6, то по величине магнитного потока в магнитопроводе 2 судят о величине магнитного потока в объекте 6.

В межполюсном пространстве электромагнита вблизи поверхности контролируемого объекта 6 размещен датчик 7 поля, сигнал которого пропорционален внутреннему магнитному полю в объекте 6.

Преобразователь 1 размещают на контролируемом участке объекта 6, причем между полюсами магнитопровода 2 электромагнита и поверхностью объекта 6 может образоваться зазор 8 (Фиг.1). Контролируемый участок объекта 6 намагничивают, увеличивая ток в обмотках 3 электромагнита.

При максимальном намагничивающем токе с помощью датчика 5 определяют относительную величину максимального магнитного потока EФmax в цепи "преобразователь - объект". Затем намагничивающий ток выключают, т.е. убирают внешнее магнитное поле и датчиком 7 поля измеряют параллельную направлению намагничивания тангенциальную составляющую магнитного поля на поверхности контролируемого участка 6 объекта . Затем полем обратной полярности контролируемый участок объекта 6 размагничивают до достижения нулевого магнитного потока в магнитопроводе 2, что соответствует нулевому сигналу датчика 5, и регистрируют величину размагничивающего тока IHc или величину тангенциальной составляющей магнитного поля EHc на поверхности контролируемого участка объекта 6, по которым определяют значение коэрцитивной силы.

Учет влияния зазора на результат измерения коэрцитивной силы выполняется с использованием линейной регрессионной модели вида [Четыркин Е.М., Калихман И.Л. Вероятность и статистика. - М.: Финансы и статистика, 1982. - 319 с.]:

где Hc - истинное значение коэрцитивной силы;

EHc - значение измеряемого сигнала, соответствующего коэрцитивной силе;

EФmax - значение измеряемого сигнала, соответствующего максимальному потоку в магнитной цепи.

Коэффициенты А0, А1 и А2 зависят от конфигурации магнитной цепи "преобразователь - объект" и их точные значения устанавливаются при градуировке конкретного коэрцитиметра.

На фиг.2 приведены зависимости измеренных с помощью П-образного преобразователя характеристик EHc и EФmax для закаленных и отпущенных при различных температурах образцов из стали 7Х3, имеющих форму прямоугольных параллелепипедов с размерами 9×9×65 мм. Линии А получены при нулевом зазоре, линии В - при d=0,5 мм. Среднеквадратичная погрешность определения коэрцитивной силы по одному параметру EHc составляет 1,65 А/см. Для тех же образцов способ определения коэрцитивной силы с учетом параметра EФmax по регрессионному уравнению

имеет погрешность 0,3 А/см, т.е. почти в 5 раз меньше, чем при однопараметровых измерениях.

Компенсация влияния формы и размеров объектов на результат локального измерения их коэрцитивной силы осуществляется аналогичным образом. На фиг.3 приведены зависимости измеренной с помощью приставного преобразователя характеристики EHc от коэрцитивной силы объектов различных размеров и формы (высота от 4 до 34 мм; ширина от 7,5 до 34 мм). Видно, что при одних и тех же измеренных значениях EHc разброс значений коэрцитивной силы составляет от 3 до 15 А/см. Обусловленная различием размеров и формы контролируемых объектов среднеквадратичная погрешность определения коэрцитивной силы по одному параметру EHc составляет 4,2 А/см. Для этой же выборки учет формы и размеров по величине с помощью регрессионного уравнения

уменьшает среднеквадратичную погрешность определения коэрцитивной силы до 1,5 А/см, т.е. почти в 3 раза.

Аналогичные результаты получены при регистрации коэрцитивной силы по величине размагничивающего тока в обмотке приставного электромагнита при нулевом магнитном потоке в цепи "преобразователь - объект", а также при использовании двухполюсного цилиндрического преобразователя (Фиг.4).

Таким образом, заявляемый способ локального измерения коэрцитивной силы ферромагнитных объектов, предусматривающий дополнительное измерение максимального магнитного потока в цепи "преобразователь - объект" с зазором и получающейся после выключения максимального намагничивающего тока тангенциальной составляющей магнитного поля на поверхности контролируемого участка объекта, позволяет существенно снизить погрешность определения коэрцитивной силы, связанную с вариациями неконтролируемого зазора в магнитной цепи и различием форм и размеров контролируемых объектов.

Похожие патенты RU2483301C1

название год авторы номер документа
ПРИСТАВНОЙ ЭЛЕКТРОМАГНИТ К КОЭРЦИТИМЕТРУ 2013
  • Богачев Александр Сергеевич
  • Борисенко Вячеслав Владимирович
  • Гусев Игорь Павлович
  • Елистратова Ирина Владимировна
RU2535632C1
КОЭРЦИТИМЕТР НА ПОСТОЯННЫХ МАГНИТАХ 2001
  • Горкунов Э.С.
  • Табачник В.П.
  • Башков Ю.Ф.
  • Дурницкий В.Н.
RU2210786C2
ПРИСТАВНОЕ УСТРОЙСТВО КОЭРЦИТИМЕТРА 2006
  • Безлюдько Геннадий Яковлевич
  • Захаров Владимир Анатольевич
RU2327180C2
ПРИСТАВНОЙ ФЕРРОМАГНИТНЫЙ КОЭРЦИТИМЕТР 2002
  • Валиев М.М.
  • Исмагилов М.З.
  • Нургалеев З.К.
RU2238572C2
ПРИСТАВНОЕ УСТРОЙСТВО КОЭРЦИТИМЕТРА 1991
  • Ульянов А.И.
  • Захаров В.А.
  • Мерзляков Э.Ф.
  • Воронов С.А.
RU2035745C1
Способ селективного контроля глубины и качества поверхностного упрочнения изделий из ферромагнитных материалов 2022
  • Костин Владимир Николаевич
  • Василенко Ольга Николаевна
  • Бызов Александр Викторович
  • Ксенофонтов Данила Григорьевич
RU2782884C1
Приставной ферромагнитный коэрцитиметр 1977
  • Валиев Масхут Маликович
SU744395A1
Приставной ферромагнитный коэрцити-METP 1979
  • Аитов Иршат Лутфуллович
  • Валиев Масхут Маликович
SU834635A2
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РЕЛАКСАЦИОННОЙ КОЭРЦИТИВНОЙ СИЛЫ И РЕЛАКСАЦИОННОЙ НАМАГНИЧЕННОСТИ ПРОТЯЖЕННЫХ ИЗДЕЛИЙ ИЗ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ 2016
  • Новиков Виталий Федорович
  • Радченко Александр Васильевич
  • Устинов Валерий Петрович
  • Чуданов Владимир Евгеньевич
  • Муратов Камиль Рахимчанович
RU2627122C1
Приставное устройство коэрцитиметра 1984
  • Захаров Владимир Анатольевич
  • Шкарпеткин Владимир Васильевич
SU1205089A1

Иллюстрации к изобретению RU 2 483 301 C1

Реферат патента 2013 года СПОСОБ ЛОКАЛЬНОГО ИЗМЕРЕНИЯ КОЭРЦИТИВНОЙ СИЛЫ ФЕРРОМАГНИТНЫХ ОБЪЕКТОВ

Изобретение относится к области разработки способов локального измерения магнитных свойств ферромагнитных объектов различных размеров и форм, в частности для целей неразрушающего контроля. Сущность изобретения заключается в том, что способ локального измерения коэрцитивной силы ферромагнитных объектов включает намагничивание объекта, последующее его размагничивание, измерение напряженности магнитного поля и тангенциальной составляющей магнитного поля, при этом на контролируемый локальный участок объекта размещают электромагнит, с образованием составной магнитной цепи "преобразователь - объект" с зазором, в момент намагничивания измеряют максимальную величину магнитного потока, отключают внешнее магнитное поле и измеряют величину тангенциальной составляющей магнитного поля на поверхности контролируемого участка, затем участок размагничивают до достижения нулевого магнитного потока в цепи и измеряют величину размагничивающего тока и тангенциальной составляющей магнитного поля, по результатам измерений которых судят о величине коэрцитивной силы. Технический результат - повышение достоверности локального измерения коэрцитивной силы. 7 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 483 301 C1

1. Способ локального измерения коэрцитивной силы ферромагнитных объектов, включающий намагничивание объекта, последующее его размагничивание, измерение напряженности магнитного поля и тангенциальной составляющей магнитного поля, отличающийся тем, что на контролируемый локальный участок объекта размещают электромагнит, с образованием составной магнитной цепи "преобразователь - объект" с зазором, в момент намагничивания измеряют максимальную величину магнитного потока, отключают внешнее магнитное поле и измеряют величину тангенциальной составляющей магнитного поля на поверхности контролируемого участка, затем участок размагничивают до достижения нулевого магнитного потока в цепи и измеряют величину размагничивающего тока и тангенциальной составляющей магнитного поля, по результатам измерений которых судят о величине коэрцитивной силы.

2. Способ по п.1, отличающийся тем, что магнитный поток в цепи измеряют датчиком Холла, расположенным в отверстии, выполненном в магнитопроводе и представляющем собой щель с плоскопараллельными стенками, перпендикулярными направлению магнитного потока.

3. Способ по п.1, отличающийся тем, что тангенциальную составляющую магнитного поля измеряют в межполюсном пространстве электромагнита вблизи поверхности контролируемого объекта, где сигнал пропорционален внутреннему магнитному полю в объекте.

4. Способ по п.1, отличающийся тем, что составную магнитную цепь "преобразователь - объект" с зазором образуют с использованием П-образного или цилиндрического электромагнита.

5. Способ по п.1, отличающийся тем, что по результатам измерений размагничивающего тока судят о величине коэрцитивной силы, усредненной по промагничиваемому объему.

6. Способ по п.1, отличающийся тем, что по результатам измерений тангенциальной составляющей магнитного поля судят о величине коэрцитивной силы приповерхностного слоя объекта.

7. Способ по п.1, отличающийся тем, что о величине коэрцитивной силы с учетом влияния величины зазора судят по формуле:
Hc=A0+A1·EHc2·ЕФmax,
где Hc - истинное значение коэрцитивной силы;
EHc - значение сигнала, соответствующего коэрцитивной силе;
ЕФmax - значение сигнала, соответствующего максимальному потоку в магнитной цепи;
A0, A1 и А2 - коэффициенты.

8. Способ по п.1, отличающийся тем, что о величине коэрцитивной силы с учетом влияния размеров и формы объекта судят по формуле:

где Hc - истинное значение коэрцитивной силы;
EHc - значение сигнала, соответствующего коэрцитивной силе;
- значение сигнала, соответствующего тангенциальной составляющей магнитного поля на поверхности контролируемого участка объекта, измеряемое после отключения намагничивающего поля;
В0, B1 и В2 - коэффициенты.

Документы, цитированные в отчете о поиске Патент 2013 года RU2483301C1

СПОСОБ ИЗМЕРЕНИЯ КОЭРЦИТИВНОЙ СИЛЫ ФЕРРОМАГНИТНЫХ СТЕРЖНЕВЫХ ОБРАЗЦОВ 1990
  • Трусов Николай Калистратович[By]
RU2024889C1
КОНДЕНСАТОР ПЕРЕМЕННОЙ ЕМКОСТИ 1928
  • Плавинг В.Ю.
SU9627A1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ 1998
  • Беляев Б.А.
  • Лексиков А.А.
  • Макиевский И.Я.
  • Овчинников С.Г.
RU2160441C2
ПРИСТАВНОЙ ФЕРРОМАГНИТНЫЙ КОЭРЦИТИМЕТР 2002
  • Валиев М.М.
  • Исмагилов М.З.
  • Нургалеев З.К.
RU2238572C2
JP 2001141701 A, 25.05.2001
JP 5264704 A, 12.10.1993.

RU 2 483 301 C1

Авторы

Костин Владимир Николаевич

Василенко Ольга Николаевна

Даты

2013-05-27Публикация

2011-11-22Подача