СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ СЫПУЧЕГО МАТЕРИАЛА Российский патент 2013 года по МПК G01F23/284 

Описание патента на изобретение RU2488079C1

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ, реализуемый микроволновым датчиком высоты слоя материала в аэрожелобе (см. А.В.Степанов. «Инновационные микроволновые приборы измерения расхода сыпучих веществ в аэрожелобах», Автоматизация в промышленности, №11, 2008, с.29-30), выполненным в виде измерительной пластины. Суть этого способа заключается в зондировании контролируемого материала микроволновым сигналом и измерении амплитуды отраженного от слоя материала сигнала, связанного с высотой слоя материала в аэрожелобе.

Недостатком этого известного способа является сложность процедуры получения информации о высоте слоя материала из-за необходимого выбора размеров измерительной пластины и ее сменности в зависимости от геометрических размеров аэрожелоба.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения высоты слоя сыпучего материала (RU 2395789 С1, 27.07.2010). Данный способ предусматривает воздействие контролируемого сыпучего материала магнитным полем, зондирование материала электромагнитной волной и измерение угла поворота плоскости поляризации прошедшей через слой материала волны. Здесь по значению угла поворота определяют высоту слоя материала в аэрожелобе.

Недостатком данного способа можно считать сложность процедуры измерения угла поворота плоскости поляризации, связанного с высотой слоя материала.

Техническим результатом заявляемого решения является упрощение процедуры измерения высоты слоя материала в аэрожелобе.

Технический результат достигается тем, что в способе определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, при котором воздействуют на контролируемый материал магнитным полем, зондируют материал электромагнитной волной и принимают прошедшую через слой материала электромагнитную волну, измеряют интенсивность прошедшей через слой материала электромагнитной волны и по измеренной величине интенсивности этой волны определяют высоту слоя материала в аэрожелобе.

Сущность заявляемого технического решения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании контролируемого слоя сыпучего материала электромагнитной волной, помещенного в продольное относительно распространения электромагнитной волны магнитное поле, по измеренной величине интенсивности прошедшей через слой контролируемого сыпучего материала волны определяют высоту слоя материала.

Наличие в заявляемом способе перечисленных существенных признаков позволяет решить поставленную задачу определения высоты слоя материала в аэрожелобе измерением интенсивности прошедшей через слой сыпучего материала волны при помещении контролируемого материала в магнитное поле и его зондировании электромагнитной волной с желаемым техническим результатом, т.е. упрощением процедуры измерения высоты слоя материала.

На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит источник излучения электромагнитных волн 1, соединенный выходом с элементом ввода излучения в аэрожелоб 2, элемент вывода излучения из аэрожелоба 3, подключенный ко входу амплитудного детектора 4, соединенный с измерителем интенсивности прошедшей через слой материала волны 5 и обмотку 6. На чертеже цифрой 7 обозначен аэрожелоб.

Суть предлагаемого способа заключается в следующем. Из практики известны вещества, способные поворачивать направление поляризации проходящей через них линейно-поляризованной волны и вещества, не обладающие этой способностью.

Предлагаемый способ направлен на решение задачи определения высоты слоя сыпучего материала, не обладающего способностью поворачивать направление поляризации прошедшей через него электромагнитной волны.

Согласно данному техническому решению, для того чтобы контролируемое вещество обладало способностью поворота плоскости поляризации электромагнитной волны, его необходимо поместить в магнитное поле (эффект Фарадея).

Как известно, эффект Фарадея сводится к вращению плоскости поляризации электромагнитной волны, проходящей через диэлектрик в присутствии постоянного (или переменного) магнитного поля, ориентированного в направлении распространения волны. Следовательно, любое диэлектрическое вещество, не обладающее способностью поворачивать плоскость поляризации, под воздействием магнитного поля может приобрести способность поворота плоскости поляризации волны.

Пусть по аэрожелобу перемещается какое-нибудь диэлектрическое вещество, не обладающее способностью поворачивать направление поляризации электромагнитной волны, например, цемент.

Если сначала воздействовать на этот сыпучий материал магнитным полем (нахождение материала в магнитном поле) и затем осуществить его зондирование электромагнитной волной (волна должна распространяться вдоль направления намагниченности цемента), то прошедшая через слой контролируемого вещества (цемента) волна окажется повернутой этим веществом, и для интенсивности прошедшей через слой контролируемого цемента волны можно записать (закон Малюса)

I = I 0 cos 2 v H l , ( 1 )

где I и I0 - интенсивности прошедшей и зондирующей волн соответственно, v - постоянная Верде (или магнитная вращательная способность вещества), Н - напряженность магнитного поля, ориентированного в направлении распространения волны, l - длина пути волны в веществе. Здесь постоянная Верде зависит от рода вещества, его физического состояния и длины зондирующей волны.

В данном случае можно принимать, что длина пути волны в веществе l соответствует высоте слоя цемента перемещаемого по аэрожелобу. В соответствии с этим из формулы (1) получаем, что при постоянных значениях v, Н и I0 по косинусоидальному изменению интенсивности прошедшей через слой цемента электромагнитной волны можно судить об изменении высоты слоя сыпучего материала (цемента) в аэрожелобе.

Устройство, реализующее предлагаемый способ, работает следующим образом. Создают магнитное (переменное) поле на некотором горизонтальном измерительном участке аэрожелоба 7 посредством продольной обмотки 6, расположенной в пазах наружной поверхности аэрожелоба, т.е. образуют катушку, внутри которой перемещается сыпучий материал (цемент). Через катушку пропускают переменный электрический ток. В результате перемещаемый по аэрожелобу диэлектрический сыпучий материал приобретает способность поворачивать направление поляризации падающей на материал электромагнитной волны. После этого выходной электромагнитный сигнал источника излучения 1 направляют в элемейт ввода излучения в аэрожелоб 2. Излучаемой этим элементом волной зондируют слой сыпучего материала, перемещаемого по аэрожелобу (волна падает на слой материала перпендикулярно). При этом вектор поля зондирующей электромагнитной воны коллиндерен вектору напряженности приложенного переменного магнитного поля. Прошедший через слой сыпучего материала сигнал принимают элементом вывода излучения из аэрожелоба 3. Выходной сигнал этого элемента далее поступает на вход амплитудного детектора 4. Выходной продетектированный согнал последнего подают на вход измерителя интенсивности 5. В этом приборе фиксируют значения интенсивности I, которые далее используются для определения высоты слоя сыпучего материала согласно формуле (1). В этой формуле значения постоянной Верде v выбираются, как уже было сказано выше, в зависимости от свойства и состояния конкретного сыпучего материала и длины используемой зондирующей электромагнитной волны. Кроме того, напряженность Н переменного магнитного поля, зависящая от силы тока, протекающего через обмотку 6, и числа продольных относительно горизонтальной оси аэрожелоба витков, приходящегося на единицу длины измерительного участка аэрожелоба, может быть вычислена через магнитную индукцию магнитного поля и магнитную проницаемость материала, из которого изготовлен аэрожелоб.

При реализации данного способа намагниченность сыпучего материала в аэрожелобе также может быть осуществлена на базе постоянного магнитного поля, образованного, например, двумя плоскими ферритами. При этом измерительный участок аэрожелоба располагают между этими ферритами так, чтобы вектор напряженности постоянного магнитного поля был параллелен вектору поля зондирующей сыпучий материал волны.

Заявленное техническое решение успешно может быть применено для решения задачи измерения массового расхода различных пылевидных материалов, транспортируемых по аэрожелобам и трубопроводам.

Таким образом, согласно предлагаемому способу на основе измерения интенсивности прошедшей через слой сыпучего материал электромагнитной волны, можно обеспечить упрощение процедуры измерения высоты слоя сыпучего материала, перемещаемого по аэрожелобу.

Похожие патенты RU2488079C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ СЫПУЧЕГО МАТЕРИАЛА 2009
  • Ахобадзе Гурам Николаевич
RU2395789C1
Способ бесконтактного измерения высоты пороховых элементов в гильзе 2019
  • Шпагин Юрий Борисович
  • Духанов Олег Владимирович
  • Маруженко Андрей Алексеевич
  • Курков Сергей Николаевич
  • Курков Дмитрий Сергеевич
  • Устинов Евгений Михайлович
RU2743336C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ ВЕЩЕСТВА 2011
  • Ахобадзе Гурам Николаевич
RU2478191C1
СВЕРХВЫСОКОЧАСТОТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ 2014
  • Ахобадзе Гурам Николаевич
RU2564822C1
СПОСОБ ОПРЕДЕЛЕНИЯ СПЛОШНОСТИ ПОТОКА ЖИДКОСТИ В ТРУБОПРОВОДЕ 1994
  • Ахобадзе Г.Н.
RU2090868C1
СПОСОБ ОПРЕДЕЛЕНИЯ СПЛОШНОСТИ ПОТОКА ЖИДКОСТИ В ТРУБОПРОВОДЕ 2011
  • Ахобадзе Гурам Николаевич
RU2483296C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА 2017
  • Совлуков Александр Сергеевич
RU2670707C9
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДИЭЛЕКТРИЧЕСКИХ ЖИДКИХ ВЕЩЕСТВ 2009
  • Ахобадзе Гурам Николаевич
RU2404421C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАРУЖНОГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ 2013
  • Ахобадзе Гурам Николаевич
RU2545499C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМНОГО ВЛАГОСОДЕРЖАНИЯ ОБВОДНЕННОГО НЕФТЕПРОДУКТА, ЗАПОЛНЯЮЩЕГО МЕТАЛЛИЧЕСКИЙ СОСУД 2004
  • Ахобадзе Гурам Николаевич
RU2279666C1

Реферат патента 2013 года СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ СЫПУЧЕГО МАТЕРИАЛА

Предлагаемое техническое решение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, заключается в том, что воздействуют на контрольный материал магнитным полем, зондируют материал электромагнитной волной и принимают прошедшую через слой материала электромагнитную волну. При этом измеряют интенсивность прошедшей через слой материала электромагнитной волны и по измеренной величине интенсивности этой волны определяют высоту слоя материала в аэрожелобе. Техническим результатом является упрощение процедуры измерения высоты слоя сыпучего материала в аэрожелобе. 1 ил.

Формула изобретения RU 2 488 079 C1

Способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу, при котором воздействуют на контролируемый материал магнитным полем, зондируют материал электромагнитной волной и принимают прошедшую через слой материала электромагнитную волну, отличающийся тем, что измеряют интенсивность прошедшей через слой материала электромагнитной волны и по измеренной величине интенсивности этой волны определяют высоту слоя сыпучего материала в аэрожелобе.

Документы, цитированные в отчете о поиске Патент 2013 года RU2488079C1

СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ СЛОЯ СЫПУЧЕГО МАТЕРИАЛА 2009
  • Ахобадзе Гурам Николаевич
RU2395789C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ МАТЕРИАЛА В РЕЗЕРВУАРЕ 2009
  • Атаянц Борис Аванесович
  • Езерский Виктор Витольдович
  • Мирошин Сергей Викторович
  • Паршин Валерий Степанович
RU2399888C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ 2007
  • Ахобадзе Гурам Николаевич
RU2350901C1
РАДИОЛОКАЦИОННОЕ ИЗМЕРЕНИЕ УРОВНЯ ЗАПОЛНЕНИЯ С ИСПОЛЬЗОВАНИЕМ КРУГОВОЙ ПОЛЯРИЗАЦИИ ВОЛН 2004
  • Ференбах Йозеф
  • Гриссбаум Карл
RU2327116C2
US 7819003 B2, 26.10.2010.

RU 2 488 079 C1

Авторы

Ахобадзе Гурам Николаевич

Даты

2013-07-20Публикация

2012-03-01Подача