СПОСОБ ДОБЫЧИ ПОДВОДНЫХ ЗАЛЕЖЕЙ ГАЗОВЫХ ГИДРАТОВ И ПОДВОДНЫЙ ДОБЫЧНЫЙ КОМПЛЕКС ГАЗОВЫХ ГИДРАТОВ Российский патент 2013 года по МПК E21B43/24 

Описание патента на изобретение RU2489568C1

Изобретение относится к газонефтяной промышленности, а более конкретно к объектам обустройства морского месторождения добычи твердых газовых гидратов.

Газовые гидраты - кристаллические соединения, в которых пустоты внутри структур, образованных молекулами воды, заполняют молекулы газов. Гидраты углеводородов - потенциальный ключевой источник топлива и сырья для химической промышленности; в одном кубометре гидрата метана заключено 160-180 м3 метана. Оценки объема мировых запасов гидратов углеводородов разнятся на порядки, но, скорее всего, они превышают мировые запасы природного газа. Некоторые сложности представляет собой транспортировка гидратов; то, при каком давлении газ начинает освобождаться, зависит не только от химического состава гидрата, но и от условий, при которых последний формировался.

Известны 3 основных способа добычи гидратов природного газа (термальное воздействие, воздействие ингибитором, снижение давления).

Все они основаны на применении диссоциации - процесса, в ходе которого вещество распадается на более простые составляющие. В случае с гидратами природного газа диссоциация проходит при увеличении температуры и снижении давления, когда кристаллы льда тают или как-то изменяют свою форму, тем самым высвобождая молекулы природного газа, заключенные внутри кристалла.

Термальное воздействие. Этот метод основан на подаче тепла внутрь кристаллической структуры гидрата с целью повышения температуры и ускорения процесса диссоциации. Практическим примером такого метода может служить накачивание теплой морской воды внутрь слоя гидратов газа, залегающего на дне моря. Как только газ начнет высвобождаться из слоя морских отложений, его можно будет собрать.

Для получения газообразного метана из твердых газовых гидратов, их нужно расплавить, то есть нагреть.

Известен способ и устройство для добычи подводных газовых гидратов, заключающийся в том, что прокладывают специальный трубопровод с платформы на поверхности моря до залежей газовых гидратов на морском дне. Особенность трубопровода в том, что он состоит из труб с двойной стенкой. Это как бы два трубопровода, из которых один пропущен сквозь другой.

По внутренней трубе подается морская вода, нагретая до 30…40 градусов С, непосредственно к месторождению газовых гидратов, которые начинают плавиться, при этом из них выделяются пузырьки газообразного метана, которые вместе с водой поднимаются по внешней трубе наверх, к платформе, где метан отделяется от воды и подается в цистерны или в магистральный трубопровод, а теплая вода снова закачивается вниз, к залежам газовых гидратов (Х.Ю. Щульц. Технология добычи газовых гидратов. Источник: Газовые гидраты, http://n-t.ru/tp/ie/gn.htm [1], Горчилин В.А., Лебедев Л.И. О признаках газогидратов в осадочной толще Черного моря и возможном типе ловушек углеводородов // Геологический журнал. - 1991. - №5 [2]).

Воздействие ингибитором. Некоторые виды спиртов, например метанол, действуют как ингибиторы при подаче внутрь слоя залегания гидратов газа и вызывают изменение состава гидрата. Ингибиторы изменяют условия температуры и давления, способствуя диссоциации гидратов и высвобождению содержащегося в них метана.

Снижение давления. В некоторых месторождениях гидратов есть участки, где природный газ уже находится в свободном состоянии. Если пробурить скважину в таком участке, чтобы высвободить природный газ, то после его добычи снизится давление в слое, содержащем гидраты. Если такого перепада давления окажется достаточно для начала диссоциации, то начнется процесс высвобождения природного газа из слоя гидратов.

Компьютерное моделирование процесса термального воздействия на гидраты с использованием горячей воды и пара показало, что объем газа, высвобождаемый таким методом, достаточно велик для добычи. Однако затраты слишком велики.

В случае с воздействием ингибиторами ситуация аналогичная - с экологической и экономической точек зрения, такой способ добычи нецелесообразен. На сегодняшний день самым перспективным способом добычи представляется метод добычи с понижением давления. Однако и у этого метода есть свои минусы: его можно применять только на месторождениях, где уже есть скопления природного газа в свободном состоянии в слое гидратов; при добыче свободного природного газа скопившегося в слое гидратов, возможно изменение структуры и формы слоя под влиянием процесса диссоциации и образования пустот.

Устойчивость состояния океанических гидратов метана зависит не только от величины давления (глубины залегания) и окружающей температуры, но также от уровня концентрации или растворимости метана в морских отложениях.

Известно, что соль помогает льду таять, поскольку понижает температуру замерзания воды. При этом концентрированный солевой раствор будет точно так же воздействовать на газовые гидраты, помогая им плавиться и отдавать содержащийся в них метан. Для этого в известном способе добычи подводных газовых гидратов предлагается установить над разведанной газогидратной залежью полупогружную плавучую платформу, с которой необходимо пробурить две скважины в газогидратном грунте. В одну из них, нагнетательную, будет подаваться концентрированный солевой раствор (с концентрацией соли 31,7%), а из другой, вытяжной, - извлекаться метан. В теплое время года в газогидратную залежь предлагается закачивать не солевой концентрат, а теплую морскую воду.

Однако, чтобы солевой концентрат начал действовать, газогидратную залежь необходимо предварительно «взорвать», к примеру, подавая в нее газ под высоким давлением (это можно сделать с помощью специальной газовой пушки). Метан, который высвободится из своих ледяных домиков и устремится к поверхности моря, окажется либо в газосборном колпаке, установленном под водой, либо прямо из скважины попадет в резервуар на плавучей платформе, где его сжижат и перельют в низкотемпературные емкости.

Для обеспечения работы плавучей платформы (устройства для извлечения метана, ожижителя горючего газа, насосов, газовой пушки и т.д.) предлагается использовать газотурбинную установку мощностью 6 МВт и теплосиловую установку, которая вырабатывает энергию за счет термобарической разности морской воды (разности температур и давления в глубине моря и на его поверхности). Летом термобарической разности морской воды будет достаточно, чтобы снабжать теплосиловую установку платформы электроэнергией, а в холодные месяцы года для обеспечения работы газотурбинной установки придется сжигать около полутора процентов добытого газа.

Береговая инфраструктура добычи газа включает баржи, которые будут доставлять метан на берег уже в сжиженном виде. Там он попадет на специальные береговые базы или в порты, откуда его можно развозить железнодорожным или автомобильным транспортом, либо прокачивать по трубопроводу.

Солевой концентрат предлагается получать на берегу - для этого достаточно пропустить воду через вымораживающий опреснитель.

Однако депрессия газогидратного пласта, то есть его разогрев для разложения газовых гидратов, мало что дает, а ввод в этот пласт различных растворов, которые замещают метан в таком комплексе, - сложная и неотработанная технология.

Кроме того, данная технология отягощена тем, что она имеет такие два слабых места: так называемую газогидратную бомбу - неконтролируемую подачу большой тепловой мощности в газогидратный пласт, которая может вызвать внезапное повышение давления в нем и локальный взрыв, грозящий потопить плавучую платформу; и «черную дыру» - если значительная часть газогидратного пласта оторвется от дна и всплывет, то, быстро расплавившись, она высвободит большое количество газа, что опять-таки чревато кораблекрушением плавучей платформы.

Кроме того, образующийся в порах гидрат является «цементом» и служит непроницаемой покрышкой, под которой идет накопление гидрата. В результате разложения гидрата вмещающие породы могут превращаться в полужидкую массу (со всеми вытекающими отсюда последствиями для инженерных объектов, расположенных в зоне образования газовых гидратов). При этом, широкомасштабная разработка месторождений может вызвать подводные оползни и, как следствие, разрушительные волны - цунами (Газовые гидраты. /Higrate ipg - ru.wikipedia.org/ [3]).

Задачей предлагаемого технического решения является снижение экологических последствий при промышленной разработке подводных месторождений газовых гидратов и повышение пропускной способности при транспортировке газовых гидратов.

Поставленная задача решается за счет того, что в способе добычи подводных газовых гидратов, заключающийся в том, что прокладывают трубопровод с платформы на поверхности моря до залежей газовых гидратов на морском дне, состоящий из внешней и внутренний трубы, по внутренней трубе подается морская вода, нагретая до 30…40 градусов С, непосредственно к месторождению газовых гидратов, в транспортировке пузырьков газообразного метана вместе с водой по внешней трубе наверх, к платформе, отделение метана от воды, подаче метана в цистерны или в магистральный трубопровод, в отличие от известных технических решений - одновременно с подачей морской воды, нагретой до 30…40 градусов С, подается гранитная крошка в пропорции 1:2, при подаче метана в магистральный трубопровод - метан подвергают сжатию до 38-41 МПа.

А в подводном добычном комплексе газовых гидратов, включающим платформу с трубопроводом, состоящим из внешней и внутренней трубы, насосы, газотурбинную установку мощностью 6 МВт и теплосиловую установку, которая вырабатывает энергию за счет термобарической разности морской воды - платформа выполнена в виде подвижного морского аппарата с погружаемым тендером, посредством телескопического устройства, внутри которого размещен трубопровод, выполненный из пропилена, при этом диаметр внешней трубы возрастает снизу вверх.

Сущность предлагаемого технического решения поясняется чертежом (фигура).

Фигура. Подводный добычный комплекс газовых гидратов.

Подводный добычный комплекс газовых гидратов состоит из платформы 1, на которой установлены насосы 2, трубопровод 3, газотурбинная установка 4, тепловая установка 5, тендера 6, телескопического устройства 7, загрузочного бункера 8, компрессорной станции 9, в которой компенсаторы установлены с возможностью сжатия газа до давления 38-41 МПа, при котором свойства природного газа соответствуют законам идеального газа, погружаемый тендер 9.

Платформа 1 представляет собой подвижный подводный морской аппарат с погружаемым тендером 6, посредством телескопического устройства 7, внутри которого размещен трубопровод 3, выполненный из эластичного материала, при этом диаметр внешней трубы возрастает снизу вверх. В качестве подвижного подводного морского аппарата может быть использована подводная лодка со штатными средствами и системам автоматики. Аналогом платформы 1 с тендером 6 является подводная лодка для морских исследований, описание которой приведено в источниках: Новинки в мире ВВТ в 2008 году, nvo.ng.ru, 2008-12-26, и Тарас А.Е. Атомный подводный флот 1955-2005. М.: ACT, Харвест, 2006, с.41-216. ISBN 985-13-8436-4.

Трубопровод 3 состоит из внутренней 10 и внешней 11 трубы. Диаметр внешней трубы 11 возрастает снизу вверх. Телескопическое устройство 7 снабжено буровым приспособлением 12, которое приводится в движение соответствующими механизмами 13, размещенными во внутренних отсеках тендера 6, в котором также размещена контрольно-измерительная аппаратура 14 для контроля работы трубопровода и измерительная аппаратура 15 для поиска газовых гидратов. На фигуре позициями также обозначено морская поверхность 16, морское дно 17, грунт 18, скважина 19, кровля 20 пласта 21 газовых гидратов, магистральный трубопровод 22, устройство сочленения 23 магистрального трубопровода 22 с платформой 1.

Трубопровод 3 выполнен из полипропилена типа HDPE, имеющего вес в 5-7 раз меньше, чем у стальных труб, коэффициент шероховатости которого в 7 раз меньше чем у стальных труб.

Техническая сущность предлагаемого способа заключается в следующем. При обнаружении подводных газовых гидратов в количестве, обеспечивающем их промышленную добычу, посредством бурового приспособления 13 в грунте 18 морского дна до кровли 20 пласта 21 с газовыми гидратами оборудуется скважина 19. В скважину 19 посредством телескопического устройства 7 заводится трубопровод 3, во внутреннюю трубу 10 которого из загрузочного бункера 8 подается морская вода, нагретая до 30…40 градусов С и гранитная крошка в пропорции 1:2. непосредственно к месторождению газовых гидратов, которые начинают плавиться, при этом из них выделяются пузырьки газообразного метана, которые вместе с водой поднимаются по внешней трубе 11 наверх, к платформе, где метан отделяется от воды и подается в цистерны или в магистральный трубопровод, а теплая вода снова закачивается вниз, к залежам газовых гидратов. Посредством компрессорной станции 9, в которой компенсаторы установлены с возможностью сжатия газа до давления 38-41 МПа, при котором свойства природного газа соответствуют законам идеального газа, извлеченный метан подается в магистральный трубопровод 22 через устройство сочленения 23 магистрального трубопровода 22 с платформой 1.

При извлечении газовых гидратов из пласта 21 освободившийся внутренний объем пласта 21 заполняется гранитной крошкой, что позволит уменьшить вероятность образования оползней.

Выполнение платформы 1 в виде подвижного подводного морского аппарата с погружаемым тендером 6, позволяет выполнять добычные работы с размещением платформы на различных глубинах, что позволяет использовать менее мощные коммуникационные связи.

Источники информации

1. Газовые гидраты, http://n-t.ru/tp/ie/gn.htm.

2. Горчилин В.А., Лебедев Л.И. О признаках газогидратов в осадочной толще Черного моря и возможном типе ловушек углеводородов // Геологический журнал. - 1991. - №5.

3. Газовые гидраты. /Higrate ipg - ru.wikipedia.org/.

Похожие патенты RU2489568C1

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ ПОДВОДНЫХ ЗАЛЕЖЕЙ ГАЗОВЫХ ГИДРАТОВ 2012
  • Воробьев Александр Валентинович
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Чернявец Владимир Васильевич
  • Зеньков Андрей Федорович
  • Жуков Юрий Николаевич
RU2490676C1
СПОСОБ ДОБЫЧИ И ТРАНСПОРТИРОВКИ ГАЗОВЫХ ГИДРАТОВ ДОННЫХ ОТЛОЖЕНИЙ И ПОДВОДНАЯ ЛОДКА ДЛЯ ДОБЫЧИ И ТРАНСПОРТИРОВКИ ГАЗОВЫХ ГИДРАТОВ 2014
  • Воробьев Александр Валентинович
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Чернявец Владимир Васильевич
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
RU2554374C1
СПОСОБ ДОБЫЧИ ГАЗОВЫХ ГИДРАТОВ ИЗ ПРИДОННЫХ СЛОЕВ МОРЕЙ, ОКЕАНОВ И ОЗЕР 2015
  • Воробьёв Александр Егорович
  • Щесняк Кирилл Евгеньевич
  • Рагхав Джугендра Сингх
  • Щесняк Леонид Евгеньевич
  • Власова Анна Владимировна
  • Чекушина Елена Владимировна
RU2588522C1
СПОСОБ ДОБЫЧИ ГАЗОВЫХ ГИДРАТОВ ДОННЫХ ОТЛОЖЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Воробьев Александр Валентинович
  • Травин Сергей Викторович
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Чернявец Владимир Васильевич
RU2554375C1
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА И УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА 2014
  • Воробьев Александр Валентинович
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Чернявец Владимир Васильевич
  • Зеньков Андрей Федорович
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
RU2552753C1
СПОСОБ АКТИВНОЙ БОРЬБЫ С АЙСБЕРГОВОЙ ОПАСНОСТЬЮ И УСТРОЙСТВО ДЛЯ АКТИВНОЙ БОРЬБЫ С АЙСБЕРГОВОЙ ОПАСНОСТЬЮ 2012
  • Чернявец Антон Владимирович
  • Жильцов Николай Николаевич
  • Зеньков Андрей Федорович
  • Аносов Виктор Сергеевич
  • Федоров Александр Анатольевич
  • Чернявец Владимир Васильевич
RU2484209C1
СПОСОБ ОБУСТРОЙСТВА МОРСКИХ ТЕРМИНАЛОВ ПО ДОБЫЧЕ ПОДВОДНЫХ ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ 2014
  • Левченко Дмитрий Герасимович
  • Зубко Юрий Николаевич
  • Рогинский Константин Александрович
  • Ильинский Дмитрий Анатольевич
  • Леденев Виктор Валентинович
  • Чернявец Владимир Васильевич
  • Зеньков Андрей Федорович
  • Бродский Павел Григорьевич
RU2567563C1
СПОСОБ РЕГИСТРАЦИИ СЕЙСМИЧЕСКИХ СИГНАЛОВ НА АКВАТОРИИ МОРЯ ПРИ ПОИСКЕ ПОДВОДНЫХ ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ 2011
  • Жуков Юрий Николаевич
  • Чернявец Владимир Васильевич
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Чернявец Антон Владимирович
RU2483330C1
СПОСОБ РАЗРАБОТКИ ПОДВОДНЫХ ГАЗОГИДРАТНЫХ ЗАЛЕЖЕЙ 2013
  • Гульков Александр Нефедович
  • Лапшин Виктор Дорофеевич
RU2543389C1
ДОННАЯ СТАНЦИЯ 2012
  • Чернявец Антон Владимирович
  • Жильцов Николай Николаевич
  • Зеньков Андрей Федорович
  • Аносов Виктор Сергеевич
  • Федоров Александр Анатольевич
  • Чернявец Владимир Васильевич
RU2484504C1

Иллюстрации к изобретению RU 2 489 568 C1

Реферат патента 2013 года СПОСОБ ДОБЫЧИ ПОДВОДНЫХ ЗАЛЕЖЕЙ ГАЗОВЫХ ГИДРАТОВ И ПОДВОДНЫЙ ДОБЫЧНЫЙ КОМПЛЕКС ГАЗОВЫХ ГИДРАТОВ

Группа изобретений относится к газонефтяной промышленности, а более конкретно к объектам обустройства морского месторождения добычи твердых газовых гидратов. Обеспечивает снижение экологических последствий при промышленной разработке подводных месторождений газовых гидратов и повышение пропускной способности при транспортировке газовых гидратов. Сущность изобретений: способ заключается в том, что прокладывают трубопровод с платформы на поверхности моря до залежей газовых гидратов на морском дне, состоящий из внешней и внутренний трубы. По внутренней трубе подают морскую воду, нагретую до 30…40 градусов С, непосредственно к месторождению газовых гидратов. Транспортируют пузырьки газообразного метана вместе с водой по внешней трубе наверх к платформе. Отделяют метан от воды. Подают метан в цистерны или в магистральный трубопровод. При подаче морской воды, нагретой до 30…40 градусов С, подают гранитную крошку в пропорции 1:2 для заполнения внутреннего объема пласта, освободившегося при извлечении газовых гидратов. Подводный добычный комплекс включает платформу с трубопроводом, состоящим из внутренней трубы для подачи морской воды непосредственно к месторождению газовых гидратов, нагретой до 30-40 градусов С, и гранитной крошки в пропорции 1:2, и внешней трубы для транспортировки пузырьков газообразного метана вместе с водой наверх к платформе для отделения метана от воды. Кроме того, имеются насосы, газотурбинная установка мощностью 6 МВт и теплосиловая установка для вырабатывания энергии за счет термобарической разности морской воды. При этом платформа выполнена в виде подвижного морского аппарата с погружаемым тендером посредством телескопического устройства, внутри которого размещен трубопровод, выполненный из пропилена. При этом диаметр внешней трубы возрастает снизу вверх. 2 н. и 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 489 568 C1

1. Способ добычи подводных газовых гидратов, заключающийся в том, что прокладывают трубопровод с платформы на поверхности моря до залежей газовых гидратов на морском дне, состоящий из внешней и внутренней трубы, по внутренней трубе подают морскую воду, нагретую до 30-40°С, непосредственно к месторождению газовых гидратов, транспортируют пузырьки газообразного метана вместе с водой по внешней трубе наверх, к платформе, отделяют метан от воды, подают метан в цистерны или в магистральный трубопровод, при этом при подаче морской воды, нагретой до 30-40°С, подают гранитную крошку в пропорции 1:2 для заполнения внутреннего объема пласта, освободившегося при извлечении газовых гидратов.

2. Способ добычи подводных газовых гидратов по п.1, отличающийся тем, что метан подвергают сжатию до 38-41 МПа.

3. Подводный добычный комплекс газовых гидратов, включающий платформу с трубопроводом, состоящим из внутренней трубы для подачи морской воды непосредственно к месторождению газовых гидратов, нагретой до 30-40°С, и гранитной крошки в пропорции 1:2, и внешней трубы для транспортировки пузырьков газообразного метана вместе с водой наверх к платформе для отделения метана от воды, насосы, газотурбинную установку мощностью 6 МВт и теплосиловую установку для вырабатывания энергии за счет термобарической разности морской воды, при этом платформа выполнена в виде подвижного морского аппарата с погружаемым тендером посредством телескопического устройства, внутри которого размещен трубопровод, выполненный из пропилена, при этом диаметр внешней трубы возрастает снизу вверх.

Документы, цитированные в отчете о поиске Патент 2013 года RU2489568C1

В
ФРАДКИН
Газ на дне океана как альтернативный энергоноситель [он-лайн]
Устройство для электрической сигнализации 1918
  • Бенаурм В.И.
SU16A1
Найдено из Интернет http://n-t.ru/tp/ie/gn.htm
КОМПЛЕКС ДЛЯ ОБУСТРОЙСТВА МОРСКОГО МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДОВ 2008
  • Болотин Николай Борисович
RU2379482C1
СПОСОБ РАЗРАБОТКИ ГАЗОГИДРАТНЫХ ЗАЛЕЖЕЙ 2000
  • Буслаев В.Ф.
  • Нор А.В.
  • Юдин В.М.
  • Захаров А.А.
  • Васильева З.А.
RU2230899C2
СПОСОБ ДОБЫЧИ ГАЗА ИЗ ТВЕРДЫХ ГАЗОГИДРАТОВ 1999
  • Фенелонов В.Б.
  • Мельгунов М.С.
  • Пармон В.Н.
RU2159323C1
СПОСОБ ИЗВЛЕЧЕНИЯ УГЛЕВОДОРОДОВ ИЗ ГИДРАТОВ 2002
  • Аткинсон Стивен
RU2292452C2
Способ скважинного извлечения материалов из мощных подземных формаций 1989
  • Нисковский Юрий Никандрович
  • Звонарев Михаил Иванович
  • Николайчук Николай Артемович
SU1694903A1
CN 101016841 A, 15.08.2007.

RU 2 489 568 C1

Авторы

Воробьев Александр Валентинович

Аносов Виктор Сергеевич

Жильцов Николай Николаевич

Чернявец Владимир Васильевич

Зеньков Андрей Федорович

Даты

2013-08-10Публикация

2012-03-05Подача