СПОСОБ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2013 года по МПК G01V3/12 G01S13/88 

Описание патента на изобретение RU2490672C1

Изобретение относится к геофизике и радиофизике и предназначено для исследования подповерхностной структуры почвы и обнаружения объектов до глубин в несколько сантиметров до десятков и сотен метров и применимо для решения научных и инженерных задач в различных областях, таких как геофизика, геология, строительство, археология, экология.

Известен способ радиолокационного зондирования подстилающей поверхности, включающий формирование зондирующих импульсов с помощью газового разрядника, их излучения передающей антенной, регистрацию отраженных волн приемной антенной, предварительную обработку зарегистрированного сигнала в приемном блоке с помощью аттенюатора и усилителя-ограничителя, получение волновой формы сигнала методом сравнения с величиной порога, задаваемой по шкале квантования, вывод информации на экран жидкокристаллического индикатора (ЖКИ) и запись ее в память (RU 2080622 C1, 27.05.1997).

Недостатком способа является то, что принятый за основной бинарный режим не позволяет в сложных ситуациях производить адекватную интерпретацию полученных данных.

Известно устройство для радиолокационного зондирования подстилающей поверхности, содержащее автономный передатчик, включающий последовательно соединенные таймер и преобразователь напряжения, подключенные к источнику питания, и формирователь зондирующих импульсов на газовом разряднике, и подсоединяемую через разъем передающую антенну, приемный блок, включающий последовательно соединенные приемную антенну и конструктивно объединенные в отдельный блок антенного усилителя последовательно соединенные аттенюатор и усилитель-ограничитель, соединенный с первым выходом блока синхронизации, соединенный со вторым выходом усилителя-ограничителя основной усилитель, а также устройство содержит панель управления, блок памяти и ЖКИ (RU 2080622 C1, 27.05.1997).

Недостатком устройства является небольшой динамический диапазон (менее 100 дБ), что приводит к ограничению амплитуды сигнала при получении волновой формы, а также к полной потере информации об амплитуде сигнала в режиме бинарных форм.

Известно устройство, в котором предусмотрен новый режим регистрации «волновая форма логарифмическая», в которой квантование порога производится по квазилогарифмической шкале (кусочно-линейная аппроксимация), что позволяет добиться динамического диапазона регистрируемых сигналов ~100 дБ (42 дБ дает 7-разрядный ЦАП и 56 дБ - управляемый аттенюатор). Каждому пикселю на экране индикатора (в горизонтальном направлении) соответствует квантованное значение порога, поэтому с линейным возрастанием (или уменьшением) от нулевого пикселя номера пикселя амплитуда сигнала возрастает по модулю по экспоненте. Горизонтальный формат кадра имеет 128 пикселей, нулевой пиксель находится в середине, 64 пикселя вправо отображает положительную амплитуду и 64 пикселя влево - отрицательную амплитуду (RU 2244322 C1, 10.01.2005).

Известен способ, состоящий в следующем: по оптическому каналу управления 15 включается высоковольтный источник питания 1, при этом начинается заряд накопительного конденсатора 2 и напряжение на конденсаторе 2 постепенно повышается. При достижении на конденсаторе 2 напряжения, соответствующего напряжению пробоя, разрядник 3 замыкает накопительный конденсатор 2 на передающую антенну 4, формируя мощный зондирующий видеоимпульс. Зондирующий импульс от передающей антенны 4 вначале через воздушный промежуток между передающей и приемной антенной, и затем последовательные по времени отраженные от подповерхностных неоднородностей импульсы регистрируются приемной антенной 5, и либо при необходимости ослабляются аттенюатором 6, усиливаются и ограничиваются усилителем-ограничителем 7, либо ослабляются управляемым аттенюатором 6 и усиливаются усилителем-ограничителем 7 (RU 2244322 C1, 10.01.2005).

В момент превышения импульсным сигналом на выходе усилителя-ограничителя 7 некоторого порога, выбранного исходя из требования устойчивой работы приемного тракта, запускается тактовый генератор блока синхронизации 11. Тактовые импульсы с выхода блока синхронизации 11 через блок управления 12 поступают на второй вход блока сравнения 8 и служат привязкой во времени процесса сравнения сигналов. Сигнал, пришедший на первый вход блока 8, сравнивается с другим сигналом, уровень порога которого устанавливается либо вручную, либо блоком управления 12. Уровень порога может меняться как по линейной шкале квантования, так и по квазилогарифмической шкале квантования. Превышение порога регистрируется в блоке памяти 9 как двоичная «1», отсутствие превышения - как двоичный «0». Блок управления 12 осуществляет управление выводом информации из блока памяти 9 на двумерный индикатор 10, вывод из блока памяти 9 записанной ранее информации на индикатор 10, перепись информации из блока памяти 9 по последовательному порту с помощью нуль-модемного кабеля в персональный компьютер. Перепись информации происходит под управлением компьютера по протоколу связи либо по отдельным кадрам, либо по совокупности кадров, объединенных в так называемые «трассы-линии».

Недостатками устройства и способа являются необходимость посылок как минимум 128 импульсов передатчика для получения волновой формы сигнала в квазилогарифмической шкале при временных задержках 128 нс. При увеличении временных задержек и, следовательно, глубины исследования, количество импульсов, необходимых для полноценной интерпретации, увеличивается. С учетом фиксированной скорости следования импульсов для генераторов на газовом разряднике из-за конструктивных особенностей, время регистрируемой задержки зондирующего сигнала и, соответственно, глубина зондирования ограничены на уровне схемных решений, что не всегда позволяет реализовать динамический диапазон прибора.

Задачей изобретения является создание способа и устройства для реализации нового режима регистрации сигналов моноимпульсного георадара - с оцифровкой сигнала за один импульс передатчика с сохранением, как минимум динамического диапазона не менее 140 дБ, и с пересылкой информации в компьютер для управления технологией съемки и обработки информации в реальном масштабе времени с визуализацией результата обработки в 4D представлении (3D + время).

Техническим результатом способа и устройства является оперативное получение информации о подповерхностных структурах и объектах и их интерпретация в реальном времени.

Технический результат достигается тем, что способ радиолокационного зондирования подстилающей поверхности включает формирование зондирующих импульсов с помощью газового разрядника или твердотельного генератора, их излучение передающей антенной, регистрацию отраженных волн приемной антенной, оцифровку зарегистрированного сигнала в приемном блоке с помощью аналого-цифрового преобразователя с различной величиной усиления, синхронизации и ограничения и передачей информации и запись ее в память компьютера для дальнейшей визуализации и интерпретации с помощью программы обработки. Далее по представленной в виде последовательного ряда волновых форм сигнала в трехмерных координатах - «амплитуда - время задержки - длина профиля» с цветовой кодировкой амплитуды, определяют электромагнитные параметры отраженного сигнала, значения диэлектрической постоянной, проводимости и затухания сигнала в подстилающих слоях, по величине которых судят о наличии подповерхностных объектов и проводят их локализацию в пространстве. Способ радиолокационного зондирования подстилающей поверхности включает формирование зондирующих импульсов с помощью газового разрядника или твердотельного генератора, их излучение передающей антенной, регистрацию отраженных волн приемной антенной, предварительную обработку зарегистрированного сигнала в приемном блоке с помощью аттенюатора и усилителя-ограничителя, получение цифровой волновой формы сигнала с помощью высокоразрядных и высокоскоростных АЦП и записи полноволновой формы зарегистрированного сигнала, представленной в виде последовательного ряда волновых форм сигнала в трехмерной форме - «амплитуда - время задержки - длина профиля» с координатной привязкой к местности при этом оцифровка осуществляется за один излучаемый импульс передатчика.

Технический результат достигается тем, что устройство для радиолокационного зондирования подстилающей поверхности содержит передатчик, включающий последовательно соединенные таймер и преобразователь напряжения, подключенные к источнику питания, и формирователь зондирующих импульсов на газовом разряднике или на твердотельных элементах и подсоединяемую через разъем передающую антенну, приемный блок, включающий последовательно соединенные приемную антенну, фильтр высоких частот 4-1 (ФВЧ), несимметричный делитель 4-2, усилитель синхронизации 4-4 и линейный усилитель 4-3. По старту и срабатыванию блока синхронизации 4-6 производится запись данных на высокоскоростные, многоразрядные (8-16 бит) аналогоцифровой преобразователь 4-5 (АЦП) и микропроцессор 4-7 с последующей передачей на персональный компьютер (ПК)- ноутбук.

На чертеже представлена блок-схема устройства.

Лучший вариант осуществления изобретения

Устройство состоит из двух конструктивно раздельных блоков. Передатчик 1 питается от источника питания 1-1 и состоит из таймера 1-2, задающего частоту следования (~100 гц) зондирующих импульсов, преобразователя напряжения 1-3, повышающего напряжение с 10-15 В до 5-15 кВ, и формирователя зондирующего импульса 1-4 на основе прецизионного газового разрядника или твердотельных элементов. При включении питания заряжается накопительный конденсатор в формирователе зондирующего импульса 1-4. Напряжение на разряднике постепенно возрастает, наступает пробой разрядника, конденсатор замыкается на передающую антенну 2, формируя высоковольтный зондирующий сверхширокополосный видеоимпульс. При использовании твердотельного генератора процесс аналогичен. Зондирующий импульс первым достигает приемной антенны 3 по воздушному промежутку между антеннами, и по крутому переднему фронту этого импульса формируется синхроимпульс в блоке синхронизации 4-6 приемного блока 4, который служит временной привязкой для всего процесса обработки сигнала. Отраженные от подповерхностных объектов сигналы с запаздыванием, в зависимости от удаленности и глубины их нахождения, последовательно попадают на приемную антенну 3. С антенны проходит ФВЧ (4-1) и далее через несимметричный делитель (4-2) поступает на усилитель синхронизации (4-4) и линейный усилитель (4-3).

В линейном усилителе диодами и управляемым ограничителем напряжения производится защита от импульсной помехи. Далее по старту и срабатыванию блока синхронизации (4-6) производится оцифровка данных с помощью высокоскоростных, высокоразрядных АЦП (4-5) и через микропроцессор (4-7) информация передается на ПК через кабельное или беспроводное соединение по протоколу обмена данными, где и происходит обработка и визуализация данных.

В качестве объекта исследования рассматривается полноволновая форма отраженного импульса, которая несет всю информацию о подстилающих структурах грунта.

Полноволновая форма представляет собой двумерный кадр (амплитуда - время задержки), а составной кадр из последовательного множества полноволновых форм является трехмерным (амплитуда - время задержки - длина профиля). Для обработки полноволновых форм вместо третьей (амплитудной) координаты используется цветовая градация амплитуды сигнала. Количество цветов и цветовая палитра подбирается и вводится в кадр по выбору оператора и позволяет разделять амплитуды сигнала, отличающиеся, например, для 12-разрядных АЦП в 4096 раз.

Программное обеспечение позволяет подсоединить GPS или ГЛОНАС навигатор для координатной привязки устройства. Таким образом, каждая полноволновая форма отраженного сигнала имеет координаты для привязки к карте местности. Обработка данных осуществляется с помощью программного обеспечения в реальном времени в виде четырехмерного кадра на карте исследуемой поверхности (координаты точки на карте, глубина, амплитуда поля).

Изобретение применяется в геофизике и предназначено для исследования подподповерхностной структуры почвы и обнаружения объектов до глубины от нескольких сантиметров до несколько сотен метров. Применимо также для решения научных и инженерных задач в различных областях, таких как геология, строительство, археология, коммунальное хозяйство, военная промышленность и т.д.

Похожие патенты RU2490672C1

название год авторы номер документа
СПОСОБ ГЛУБИННОЙ ГЕОРАДИОЛОКАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2022
  • Волкомирская Людмила Борисовна
  • Гулевич Оксана Александровна
RU2816128C1
СПОСОБ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Резников А.Е.
  • О Е.Д.
RU2244322C1
СПОСОБ И СИСТЕМА ГЕОРАДИОЛОКАЦИОННОГО КАРОТАЖА 2014
  • Гулевич Оксана Александровна
  • Варенков Владимир Викторович
  • Волкомирская Людмила Борисовна
  • Ляхов Геннадий Александрович
  • Резников Александр Евгеньевич
  • Руденчик Евгений Антонович
  • Сахтеров Владимир Иванович
RU2550773C1
УСТРОЙСТВО ДЛЯ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ 1994
  • Гарбацевич В.А.
  • Копейкин В.В.
  • Кюн С.Е.
  • Щекотов А.Ю.
RU2080622C1
УСТРОЙСТВО ДЛЯ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ 2001
  • Копейкин В.В.
  • Морозов П.А.
  • Козляков А.Н.
  • Беркут А.И.
RU2205424C1
СПОСОБ И СИСТЕМА РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМНЫХ НЕДР 2009
  • Омельчук Александр Прокофьевич
  • Омельчук Алексей Александрович
  • Омельчук Михаил Александрович
RU2436130C2
УСТРОЙСТВО ДЛЯ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ 2016
  • Беркут Андрей Ильич
  • Копейкин Владимир Васильевич
  • Морозов Павел Анатольевич
RU2640291C1
СПОСОБ ПОСТРОЕНИЯ ИЗОБРАЖЕНИЯ ПОДПОВЕРХНОСТНОГО ОБЪЕКТА 2008
  • Бершадская Татьяна Николаевна
  • Николаев Владимир Александрович
  • Поляков Андрей Георгиевич
  • Сидоренко Михаил Сергеевич
RU2401439C2
УСТРОЙСТВО ДЛЯ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ 2003
  • Копейкин В.В.
  • Морозов П.А.
  • Козляков А.Н.
  • Беркут А.И.
RU2248585C2
Способ восстановления радиоголограмм подповерхностных объектов, находящихся в средах с неровной поверхностью 2018
  • Разевиг Владимир Всеволодович
  • Журавлев Андрей Викторович
  • Ивашов Сергей Иванович
  • Ивашов Александр Иванович
RU2701880C1

Реферат патента 2013 года СПОСОБ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области геофизики и может быть использовано для исследования подповерхностных структур. Заявлен способ радиолокационного зондирования подстилающей поверхности, включающий формирование зондирующих импульсов с помощью газового разрядника или твердотельного генератора, их излучение передающей антенной, регистрацию отраженных волн приемной антенной с последующей их обработкой. Получение цифровой волновой формы сигнала осуществляют с помощью высокоразрядных и высокоскоростных АЦП и записи полноволновой формы зарегистрированного сигнала, представленной в виде последовательного ряда волновых форм сигнала в трехмерной форме - «амплитуда - время задержки - длина профиля» с координатной привязкой к местности. Оцифровка осуществляется за один излучаемый импульс передатчика. Для реализации данного способа также предложено устройство, включающее таймер, преобразователь напряжения, формирователь зондирующих импульсов, передающую антенну, приемный блок. Технический результат: повышение точности получаемых данных. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 490 672 C1

1. Способ радиолокационного зондирования подстилающей поверхности, характеризующийся тем, что включает формирование зондирующих импульсов с помощью газового разрядника или твердотельного генератора, их излучение передающей антенной, регистрацию отраженных волн приемной антенной, предварительную обработку зарегистрированного сигнала в приемном блоке с помощью аттенюатора и усилителя-ограничителя, получение цифровой волновой формы сигнала с помощью высокоразрядных и высокоскоростных АЦП и записи полноволновой формы зарегистрированного сигнала, представленной в виде последовательного ряда волновых форм сигнала в трехмерной форме - амплитуда - время задержки - длина профиля с координатной привязкой к местности, при этом оцифровка осуществляется за один излучаемый импульс передатчика.

2. Устройство для радиолокационного зондирования подстилающей поверхности, характеризующееся тем, что содержит передатчик, включающий последовательно соединенные таймер и преобразователь напряжения, подключенные к источнику питания, формирователь зондирующих импульсов на газовом разряднике или твердотельный генератор, и подсоединяемую через разъем передающую антенну, приемный блок, включающий последовательно соединенные приемную антенну, блок ФВЧ, несимметричный делитель, усилитель синхронизации, блок синхронизации и линейный усилитель, при этом по старту и срабатыванию блока синхронизации производится запись данных на высокоразрядные высокоскоростные АЦП, далее через микропроцессор информация через кабельное или беспроводное соединение поступает в персональный компьютер по протоколу обмена данными, где происходит обработка и визуализация информации.

Документы, цитированные в отчете о поиске Патент 2013 года RU2490672C1

СПОСОБ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Резников А.Е.
  • О Е.Д.
RU2244322C1
СПОСОБ И СИСТЕМА РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМНЫХ НЕДР 2009
  • Омельчук Александр Прокофьевич
  • Омельчук Алексей Александрович
  • Омельчук Михаил Александрович
RU2436130C2
УСТРОЙСТВО ДЛЯ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ 1994
  • Гарбацевич В.А.
  • Копейкин В.В.
  • Кюн С.Е.
  • Щекотов А.Ю.
RU2080622C1
УСТРОЙСТВО ДЛЯ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ 2001
  • Копейкин В.В.
  • Морозов П.А.
  • Козляков А.Н.
  • Беркут А.И.
RU2205424C1
Трансформатор однофазного тока, предназначенный для поддержания величины вторичного напряжения постоянным 1927
  • Улитовский А.В.
SU9971A1
US 4698634 A1, 06.10.1987.

RU 2 490 672 C1

Авторы

Волкомирская Людмила Борисовна

Варенков Владимир Викторович

Сахтеров Владимир Иванович

Кротков Дмитрий Валентинович

Силивакин Алексей Викторович

Резников Александр Евгеньевич

Даты

2013-08-20Публикация

2012-02-29Подача