СПОСОБ РЕГУЛИРОВАНИЯ И КОНТРОЛЯ ВЛАЖНОСТИ В ГЕРМЕТИЗИРОВАННЫХ КОНТЕЙНЕРАХ ДЛЯ ХРАНЕНИЯ ГИГРОСКОПИЧНЫХ МАТЕРИАЛОВ Российский патент 2013 года по МПК G05D22/00 

Описание патента на изобретение RU2490690C1

Предполагаемое изобретение относится к области средств регулирования и контроля газовоздушной среды и может быть использовано в системах управления технологическими процессами, в частности, для поддержания стабильной равновесной влажности в герметизированных контейнерах с гигроскопичными материалами.

Актуальность решаемой проблемы основана на необходимости поддержания стабильной равновесной влажности при длительном хранении в герметизированных контейнерах, имеющих ограничения по массе и габаритам, для которых установлена потребность периодических технологических вскрытий, гигроскопичных материалов, выделяющих значительное количество влаги, которая негативно сказывается на сохранении параметров электрических приборов, в которых эти материалы содержатся.

Известен способ регулирования содержания антиокисляющего компонента среды хранения в контейнерах (патент РФ №2102860, МПК A01F 25/00, публ. 27.01.1998 г.), включающий помещение гигроскопичных материалов и поглотителя влаги в герметизированный контейнер с использованием датчиков контроля содержания антиокисляющего компонента среды хранения в сочетании с продувкой контейнера для поддержания постоянного состава среды хранения с превышением содержания кислорода над содержанием диоксида углерода.

К недостаткам известного способа относится отсутствие возможности контроля и удаления влаги, содержащейся в хранящихся гигроскопичных материалах.

Известен в качестве наиболее близкого по технической сущности к заявляемому способ регулирования и контроля параметров среды хранения и гроскопичных материалов, включающий помещение гигроскопичных материалов и поглотителя влаги в герметизированный контейнер (патент РФ №2195643, МПК G01N 17/00, публ. 27.12.02 г.), в котором в качестве гигроскопичных материалов использован уран или его сплавы, а в качестве поглотителя влаги и других компонентов среды хранения используется смесь поглотителя и катализатора на основе палладия, селективно поглощающих газообразные примеси из среды хранения.

К недостаткам прототипа относится отсутствие возможности поддержания в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность в периодических технологических вскрытий, с хранящимися в них гигроскопичными материалами.

Задачей авторов изобретения является разработка способа, обеспечивающего поддержание стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность периодических технологических вскрытий, в которых хранятся гигроскопичные материалы в течение длительного (порядка 18-20 лет) времени, выделяющие значительное количество влаги.

Новый технический результат, обеспечивающий при использовании предлагаемого способа, заключается в поддержании в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность в периодических технологических вскрытий, с хранящимися в них гигроскопичными материалами.

Указанные задача и новый технический результат обеспечиваются тем, что в известном способе регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов путем динамического измерения изменения параметров влажности, включающем помещение образцов гигроскопичных материалов и навески поглотителя влаги в герметизированный контейнер, согласно предлагаемому способу навеску М п о г л 1 первого поглотителя влаги с остаточным влагосодержанием не более 2-х % массовых берут равной М п о г л 1 = М 1 в о д x 1 / в 1 , - произведению обратной величины фактической динамической влагоемкости - в1 поглотителя и массы избыточной влаги - M1вод в образцах гигроскопичных материалах, и выдерживают в герметизированном контейнере до истечения времени хранения порядка 10-90 суток, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов, затем из контейнера извлекают навеску первого поглотителя влаги и определяют в нем массу поглощенной воды, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания образцов гигроскопичных материалов, после чего в контейнер помещают навеску М п о г л 2 второго поглотителя влаги с остаточным влагосодержанием не более 2-х % массовых, которую берут равной М п о г л 2 = М 2 в о д x 1 / в 2 , т.е. произведению обратной величины фактической равновесной влагоемкости в2 поглотителя влаги и массы избыточной влаги М2вод в образцах гигроскопичных материалах, поглощенной ими за время разгерметизации контейнера для замены навески поглотителя влаги и за время хранения контейнера с навеской этого поглотителя влаги, далее определяют влагосодержание во втором поглотителе влаги, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания поглотителя влаги, последующую серию технологических вскрытий герметизированного контейнера и контроля параметров влажности в герметизированном контейнере осуществляют в сочетании с заменой очередного поглотителя влаги по истечении периода хранения контейнера порядка 1-5 лет.

Кроме того, по истечении кратных периодов времени хранения контейнера порядка 1-5 лет извлекают отработанный поглотитель влаги и помещают навеску очередного поглотителя влаги, массу которого определяют аналогично второму поглотителю влаги, при общем времени хранения контейнера с образцами гигроскопичных материалов 18-20 лет.

Кроме того, после помещения в контейнер навески поглотителя влаги производят дополнительно контроль относительной влажности воздуха в контейнере по показаниям датчика влажности до момента достижения равновесной влажности по графику зависимости относительной влажности воздуха в контейнере от времени его хранения.

Предлагаемый способ поясняется следующим образом.

Первоначально в герметизированный контейнер для хранения гигроскопичных материалов помещают образцы гигроскопичных материалов и навеску поглотителя влаги. В качестве образцов гигроскопичных материалов в предлагаемом способе использованы полимерные материалы с максимальным влагосодержанием, соответствующим равновесной относительной влажности воздуха (порядка ~70%) при температуре хранения 20°C. В качестве поглотителя влаги используют силикагель с остаточным влагосодержанием не более 2-х % массовых.

На фиг.1 схематично представлен герметизированный контейнер с хранящимися в нем гигроскопичным материалом и поглотителем влаги, где: 1 - контейнер; 2 - крышка контейнера; 3 - фланец контейнера; 4 - герметизирующая прокладка; 6 - образцы гигроскопических неидентичных полимерных материалов; 7 - поглотитель влаги; 8 - датчик влажности.

В контейнер (1) со снятой крышкой (2) первоначально помещают образцы полимерных материалов (6), каждый из которых имеет определенную гигроскопичность, характеризующуюся влагосодержанием этого образца гигроскопичного материала, зависящим от равновесной относительной влажности окружающего воздуха.

На фиг.2 представлен вид предварительно определенной графической зависимости равновесной относительной влажности воздуха (РВМ, %) от фактического влагосодержания образцов гигроскопичных материалов (МВМ, г). Из графика видно, какая величина влагосодержания в образцах гигроскопичных материалов соответствует равновесной относительной влажности воздуха, например, величине равновесной относительной влажности воздуха ~70% соответствует влагосодержание образцов гигроскопичных материалов ~90 граммов, а величине равновесной относительной влажности воздуха ~50%, требуемой для хранения, соответствует влагосодержание образцов гигроскопичных материалов ~50 граммов.

Равновесная относительная влажность воздуха характеризует установившееся фактическое значение содержания влаги в воздухе контейнера по отношению к максимально возможному ее содержанию при данной температуре и данном влагосодержании образцов гигроскопичных материалов.

Под влагосодержанием образцов понимается абсолютное содержание влаги в образцах гигроскопичных материалов при данной температуре, которое в предлагаемом способе подвергается регулированию.

Фактическая динамическая влагоемкость поглотителя влаги представляет собой отношение массы воды (г), поглощенной поглотителем влаги при краткосрочном (10-90 суток) его нахождении при данной температуре и равновесной относительной влажности, к массе поглотителя влаги (г).

Фактическая равновесная (статическая) влагоемкость поглотителя влаги представляет собой отношение массы воды, поглощенной поглотителем влаги при длительном (более 90 суток) его нахождении при данной температуре и равновесной относительной влажности, к массе поглотителя влаги (г).

Для определения величины избыточного содержания влаги в образцах гигроскопичных материалов на основании приведенного графика (фиг.2), необходимо из начального фактического влагосодержания в образцах гигроскопичных материалов (например, 90 г) вычесть заданное конечное влагосодержание в исследуемых образцах гигроскопичных материалов (в рассматриваемом случае - 50 г), что составляет 90-50=40 граммов.

Поэтому навеску первого поглотителя М п о г л 1 с остаточным влагосодержанием не более 2-х % массовых берут равной М п о г л 1 = М 1 в о д x 1 / в 1 , т.е произведению обратной величины фактической динамической влагоемкости в1 поглотителя и массы избыточной влаги M1вод в образцах гигроскопичных материалах., и выдерживают ее в герметизированном контейнере до истечения времени хранения порядка 10-90 суток, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов, т.е. в данном случае при величине фактической (заранее измеренной) динамической влагоемкости поглотителя влаги 0,18 г/г, масса первого поглотителя влаги равна 40×(1/0,18)=222,2 грамма.

Аналогично определяют массу второго поглотителя М п о г л 2 влаги, при этом учитывают, что величина начального влагосодержания образцов гигроскопичных материалов увеличилась относительно предыдущего конечного ее значения (50 г) на величину поглощенной образцами гигроскопичных материалов влаги за период технологического вскрытия контейнера (например, на 6 г). В итоге величина начального влагосодержания образцов гигроскопичных материалов (в данном случае) равна ~56 г, что соответствует на графике (фиг.2) величине равновесной относительной влажности воздуха в контейнере ~53%.

Поэтому навеску второго поглотителя с остаточным влагосодержанием не более 2-х % массовых берут равной М п о г л 2 = М 2 в о д x 1 / в 2 , т.е. произведению обратной величины фактической равновесной влагоемкости в2 поглотителя влаги и массы избыточной влаги М2вод в образцах гигроскопичных материалах, поглощенной ими за время разгерметизации контейнера для замены навески поглотителя влаги и за время хранения контейнера с навеской этого поглотителя влаги, т.е. в данном случае при величине фактической (заранее измеренной) равновесной влагоемкости поглотителя влаги 0,2 г/г, масса второго поглотителя влаги равна 6×1/0,2=30 граммов. Навеску второго поглотителя влаги выдерживают в герметизированном контейнере до истечения времени хранения 1-5 лет, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов.

В течение последующего времени хранения образцов гигроскопичных материалов с очередным поглотителем влаги в герметизированных контейнерах производят динамический контроль относительной влажности воздуха в контейнере, а по истечении кратных (порядка 1-5 лет) периодов хранения контейнера удаляют отработанный поглотитель влаги (7) и вносят в контейнер (1) навеску очередного поглотителя влаги, массу которого определяют аналогично тому, как в случае со вторым поглотителем влаги, с учетом того факта, что при очередном вскрытии контейнера масса поглощенной образцами гигроскопичных материалов остается величиной постоянной и равной, например, ~6 г.

На фиг.3 представлен вид предварительно определенной графической зависимости равновесной относительной влажности воздуха (РВМ, %) от фактического влагосодержания поглотителя (МВС, г), массой 30 г. Из графика видно, какая величина влагосодержания поглотителя массой 30 г соответствует равновесной относительной влажности воздуха, т.е. величине равновесной относительной влажности воздуха, например, ~50% соответствует влагосодержание данного поглотителя ~6 граммов.

При очередном технологическом вскрытии контейнера из него извлекают навеску очередного отработанного поглотителя и методом взвешивания определяют его фактическое влагосодержание, на основании чего графически (фиг.5) определяется величина равновесной относительной влажности воздуха в контейнере за период нахождения поглотителя в контейнере между технологическими вскрытиями (1-5 лет).

На фиг.4 представлен вид графической зависимости текущей относительной влажности воздуха (ВТ1(τ1), %) в контейнере (1) от времени (τ1, сутки), из которой видно, что по истечение времени (например, 1 года) хранения образцов гигроскопичных материалов и поглотителя влаги с определенными выше показателями (массой, влагосодержанием и т.д.) величина относительной влажности воздуха в контейнере стабилизируется во времени на уровне 50%.

Преимущество предлагаемого способа над известным оценивается путем сравнения результатов поддержания равновесной (см. фиг.5) и текущей (фиг.6) относительной влажности воздуха в контейнере, полученных с использованием предлагаемого способа, подтверждающих, что хранение образцов в течение 3 лет и при периоде между очередными вскрытиями контейнера ~1 год сопровождается стабилизацией равновесной относительной влажности воздуха (порядка 50%) в контейнере, с аналогичными результатами, полученными с применением одной навески поглотителя влаги меньшей массы (порядка 20 г) - (см. фиг.7) и навески поглотителя влаги большей массы (порядка 200 г) - (см. фиг.8), где стабилизации такого уровня нет.

Это результат остается неизменным в течение более длительного (порядка 18-20 лет) времени хранения гигроскопичных материалов и поглотителя влаги в герметизированных контейнерах.

Таким образом, при использовании предлагаемого способа обеспечивается поддержание в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах с хранящимися в них гигроскопичными материалами, имеющих жесткое ограничение по массе и габаритам, для которых установлена потребность в периодических технологических вскрытиях.

Возможность промышленного применения предлагаемого способа подтверждается следующим примером выполнения.

Пример 1.

В лабораторных условиях предлагаемый способ реализован на опытном образце герметизированного контейнера, схематично изображенного на фиг.1, где: 1 - контейнер; 2 - крышка контейнера; 3 - фланец контейнера; 4 - герметизирующая прокладка; 5 - прижимные болты; 6 - электрические приборы с гигроскопичными материалами; 7 - навеска поглотителя влаги; 8 - датчик влажности. В контейнер (1) со снятой крышкой (2) первоначально помещают электрические приборы (6), которые содержат полимерные материалы различных марок и масс, имеющие определенную гигроскопичность, характеризующуюся предварительно определенной графической зависимостью (см. фиг.2) равновесной относительной влажности воздуха (РВМ, %) от влагосодержания гигроскопичных материалов (МВМ, г). В начальный период времени гигроскопичные материалы содержат избыточную влагу, масса которой (M1вод) соответствует: 90 г (максимальное влагосодержание гигроскопичных материалов) - 50 г (минимально допустимое влагосодержание гигроскопичных материалов) = 40 г (см. фиг.2). Затем в контейнер (1) помещают навеску поглотителя влаги (7) - силикагель марки КСМГ по ГОСТ 3956-76 массой М1погл=222,2 г, в 1/0,18=5,56 раз превышающей массу избыточной влаги в гигроскопичных материалах. Начальное требуемое влагосодержание силикагеля не должно превышать 2-х % массовых. Контейнер (1), с помещенными в него электрическими приборами (6) и навеской поглотителя влаги (7), герметизируют, прижимая болтами (5) крышку (2) с прокладкой (4) к фланцу (3). В таком состоянии контейнер (1) хранят в стационарном отапливаемом помещении в течение времени порядка 30 суток. Затем из контейнера (1) извлекают и взвешивают навеску поглотителя влаги (7), контролируют массу поглощенной им влаги как разницу между конечной и начальной массами навески поглотителя влаги. По графической зависимости (см. фиг.2) равновесной относительной влажности воздуха в контейнере от влагосодержания гигроскопичных материалов определяют равновесную относительную влажность воздуха в контейнере (1) на момент извлечения поглотителя влаги из контейнера. После чего, в контейнер (1) помещают навеску второго поглотителя влаги (7) - силикагель марки КСМГ по ГОСТ 3956-76, массой М2погл=30 г, в 1/0,2=5 раз превышающей массу избыточной влаги М2вод=6 г в гигроскопичных материалах, равную массе воды, поглощаемой ими за время разгерметизации контейнера (1) для замены поглотителя влаги (7) и за время хранения контейнера (1) с навеской второго поглотителя влаги (7). Начальное требуемое влагосодержание силикагеля не должно превышать 2-х % массовых. После помещения в контейнер навески первого и второго поглотителей влаги (7) в герметизированном контейнере производят дополнительно измерения относительной влажности воздуха с помощью датчика влажности (8). По истечении периода хранения контейнера (1) с навеской второго поглотителя (7) - порядка 3-5 месяцев, и при достижении равновесной влажности в контейнере (1), что определяется по графику зависимости (см. фиг.3) текущей относительной влажности воздуха (ВТ1(τ1), %) в контейнере (1) от времени (τ1, сутки), навеску второго поглотителя (7) извлекают из контейнера (1), взвешивают и контролируют массу поглощенной воды навеской второго поглотителя влаги (7) как разницу между конечной и начальной массами этой навески. На основании полученного результата контроля массы поглощенной воды навеской второго поглотителя влаги (7) и предварительно определенной графической зависимости (см. фиг.3) равновесной относительной влажности воздуха (РВС, %) в контейнере от влагосодержания (МВС, г) навески второго поглотителя влаги (7), производят контроль равновесной относительной влажности воздуха в контейнере (1) на момент извлечения второго поглотителя влаги из контейнера, равной в данном примере 50%. Достоверность и точность поддержания равновесной относительной влажности воздуха в контейнере (1) с применением предлагаемого способа определяют путем сравнения полученных результатов (см. фиг.4) контроля влажности воздуха (~50%) датчиком влажности (8) и соответствующих данных (50%), полученных на основании графической зависимости (см. фиг.3).

Возможность более продолжительного времени (τ2, сутки) поддержания стабильной равновесной относительной влажности воздуха (BR2(τ2), %) в контейнере (1) с гигроскопичными материалами (см. фиг.5) проверяется в результате длительного (порядка 1-5 лет) периода хранения контейнера, что сопровождается построением графической зависимости (см. фиг.6) текущей относительной влажности воздуха в контейнере при прямом ее измерении датчиком влажности от времени хранения, как и в результате более длительного (порядка 9-10 лет или 18-20 лет) периодов хранения контейнера с навеской второго поглотителя влаги (7). Графики имеют циклический характер, обусловленный необходимостью технологического вскрытия контейнеров и замены навески очередного поглотителя влаги.

Для подтверждения преимуществ заявляемого способа поддержания стабильной равновесной влажности были поставлены эксперименты с использованием одной навески поглотителя влаги, меньшей (20 г) или большей (200 г) массы, результаты которых проиллюстрированы на графиках соответственно фиг.7 и фиг.8.

Таким образом, как это подтвердили эксперименты, при использовании предлагаемого способа обеспечивается поддержание в течение длительного (до 9-10 лет и 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах с хранящимися в них гигроскопичными материалами, имеющих жесткое ограничение по массе и габаритам, для которых установлена потребность в периодических технологических вскрытиях.

Похожие патенты RU2490690C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОЕМКОСТИ ТВЕРДЫХ ГИГРОСКОПИЧНЫХ ОБЪЕКТОВ 2013
  • Пискунов Николай Владимирович
  • Козлов Василий Николаевич
  • Карпова Зинаида Васильевна
  • Трубин Александр Иванович
RU2522754C1
Способ консервации изделий на период их хранения, транспортирования или межоперационной защиты при помощи поглотителей влаги 2021
  • Данякин Никита Вячеславович
  • Соловых Сергей Николаевич
  • Тимченко Софья Олеговна
  • Кокшаров Сергей Анатольевич
RU2783018C1
КОМПОЗИЦИЯ ДЛЯ РЕГУЛИРОВАНИЯ ВЛАЖНОСТИ ОКРУЖАЮЩЕЙ СРЕДЫ, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И ЕЕ ИСПОЛЬЗОВАНИЕ ДЛЯ РЕГУЛИРОВАНИЯ ВЛАЖНОСТИ ОКРУЖАЮЩЕЙ СРЕДЫ 2014
  • Крапандзано Сальваторе Давиде
  • Кочина Донато
  • Ваула Данте
RU2640540C2
СПОСОБ КОНТРОЛЯ КОРРОЗИИ МЕТАЛЛИЧЕСКОГО УРАНА 2001
  • Дегрятева О.Ф.
RU2195643C1
Обратимый индикатор (варианты) 2021
  • Данякин Никита Вячеславович
  • Соловых Сергей Николаевич
  • Скиданов Дмитрий Сергеевич
  • Тимченко Софья Олеговна
  • Кокшаров Сергей Анатольевич
RU2782892C1
СПОСОБ РЕГУЛИРОВАНИЯ ВЛАГОСОДЕРЖАНИЯ ОРГАНИЧЕСКИХ МАТЕРИАЛОВ 1993
  • Уоррен Д.Уинтерсон
  • Джон К.Крамп Iii
  • Юджин Б.Фишер
RU2120217C1
Способ определения гигроскопических характеристик материалов 1988
  • Перепелкин Кирилл Евгеньевич
SU1608487A1
КОМПОЗИЦИЯ, ИНГИБИРУЮЩАЯ ПОТУСКНЕНИЕ, И ИЗДЕЛИЕ, ЕЕ СОДЕРЖАЩЕЕ 2004
  • Кубик Дональд Алоисиус
  • Варшал Борис
  • Люблинский Ефим Я.
  • Нюгор Барбара Энн
RU2309197C2
СПОСОБ КОНТРОЛЯ КОРРОЗИИ МЕТАЛЛИЧЕСКОГО УРАНА 1998
  • Дегтярева О.Ф.
RU2177148C2
Способ определения пожароопасности кинофотоматериалов на нитроцеллюлозной основе 1985
  • Михайлов Олег Александрович
  • Гедрович Флора Андреевна
  • Серебренников Аркадий Иннокентьевич
  • Громов Лука Александрович
  • Чукаева Светлана Евгеньевна
  • Громов Александр Николаевич
  • Григорьев Владимир Петрович
  • Кондратов Александр Петрович
  • Столяров Игорь Владимирович
SU1401356A1

Иллюстрации к изобретению RU 2 490 690 C1

Реферат патента 2013 года СПОСОБ РЕГУЛИРОВАНИЯ И КОНТРОЛЯ ВЛАЖНОСТИ В ГЕРМЕТИЗИРОВАННЫХ КОНТЕЙНЕРАХ ДЛЯ ХРАНЕНИЯ ГИГРОСКОПИЧНЫХ МАТЕРИАЛОВ

Область использования: область средств регулирования и контроля газовоздушной среды, может быть использовано в системах управления технологическими процессами, в частности, для поддержания стабильной равновесной влажности в герметизированных контейнерах с гигроскопичными материалами. Технический результат - поддержание стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность периодических технологических вскрытий, в которых хранятся гигроскопичные материалы в течение длительного (порядка 18-20 лет) времени, выделяющие значительное количество влаги. Сущность изобретения: осуществляют динамическое измерение изменения параметров влажности путем помещения образцов гигроскопичных материалов и навески поглотителя влаги в герметизированный контейнер, и последующую серию технологических вскрытий герметизированного контейнера и контроля параметров влажности в герметизированном контейнере осуществляют в сочетании с расчетом и заменой очередного поглотителя влаги по истечении периода хранения контейнера порядка 1-5 лет. Новый технический результат: поддержание в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность в периодических технологических вскрытиях, с хранящимися в них гигроскопичными материалами. Дополнительные технические результаты: увеличение продолжительности хранения герметизированного контейнера до 18-20 лет и поддержание в нем стабильной равновесной влажности, повышение достоверности и точности поддержания равновесной влажности в герметизированном контейнере. 2 з.п. ф-лы, 8 ил.

Формула изобретения RU 2 490 690 C1

1. Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов путем динамического измерения изменения параметров влажности, включающий помещение образцов гигроскопичных материалов и навески поглотителя влаги в герметизированный контейнер, отличающийся тем, что навеску М п о г л 1 первого поглотителя влаги с остаточным влагосодержанием не более 2 мас.% берут равной М п о г л 1 = М 1 в о д x 1 / в 1 - произведению обратной величины фактической динамической влагоемкости в1 поглотителя и массы избыточной влаги М1вод в образцах гигроскопичных материалах, и выдерживают в герметизированном контейнере до истечения времени хранения порядка 10-90 суток, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов, затем из контейнера извлекают навеску первого поглотителя влаги и определяют в нем массу поглощенной воды, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания образцов гигроскопичных материалов, после чего в контейнер помещают навеску М п о г л 2 второго поглотителя влаги с остаточным влагосодержанием не более 2 мас.%, которую берут равной М п о г л 2 = М 2 в о д x 1 / в 2 , т.е. произведению обратной величины фактической равновесной влагоемкости в2 поглотителя влаги и массы избыточной влаги М2вод в образцах гигроскопичных материалах, поглощенной ими за время разгерметизации контейнера для замены навески поглотителя влаги и за время хранения контейнера с навеской этого поглотителя влаги, далее определяют влагосодержание во втором поглотителе влаги, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания поглотителя влаги, последующую серию технологических вскрытий герметизированного контейнера и контроля параметров влажности в герметизированном контейнере осуществляют в сочетании с заменой очередного поглотителя влаги по истечении периода хранения контейнера порядка 1-5 лет.

2. Способ регулирования и контроля влажности в герметизированных контейнерах по п.1, отличающийся тем, что по истечении кратных периодов времени хранения контейнера порядка 1-5 лет извлекают отработанный поглотитель влаги и помещают навеску очередного поглотителя влаги аналогично второму поглотителю влаги и периодичность такой замены продлевают до истечения периода хранения 18-20 лет.

3. Способ регулирования и контроля влажности в герметизированных контейнерах по п.1, отличающийся тем, что после помещения в контейнер навески поглотителя влаги производят дополнительно контроль относительной влажности воздуха в контейнере по показаниям датчика влажности до момента достижения равновесной влажности по графику зависимости относительной влажности воздуха в контейнере от времени его хранения.

Документы, цитированные в отчете о поиске Патент 2013 года RU2490690C1

СПОСОБ КОНТРОЛЯ КОРРОЗИИ МЕТАЛЛИЧЕСКОГО УРАНА 2001
  • Дегрятева О.Ф.
RU2195643C1
СПОСОБ РЕГУЛИРОВАНИЯ ГАЗОВОЙ СРЕДЫ ПРИ ХРАНЕНИИ ПЛОДООВОЩНОЙ ПРОДУКЦИИ 1995
  • Богданов С.Ф.
  • Поляков Е.П.
  • Копанев В.Т.
RU2102860C1
СПОСОБ ТРАНСПОРТИРОВКИ, ХРАНЕНИЯ ИЛИ ПОДГОТОВКИ К ТРАНСПОРТИРОВКЕ ИЛИ ХРАНЕНИЮ СКОРОПОРТЯЩИХСЯ ПРОДУКТОВ, ТРАНСПОРТИРУЕМЫЙ КОНТЕЙНЕР И ТРАНСПОРТИРУЕМЫЙ ОБЪЕКТ 1995
  • Бошер Пол Реймонд
  • Барнз Роберт
RU2145406C1
КОМПОЗИЦИЯ И СПОСОБ ОБЕСПЕЧЕНИЯ ГЛЮТАМИНА 2006
  • Гросс Кэти Линн
  • Кхоо Кристина
RU2398445C2
Способ упаковки сыпучих гигроскопичных материалов 1984
  • Гришаев Игорь Григорьевич
  • Федюшкин Борис Федорович
  • Тарасова Галина Акимовна
  • Овчинникова Клавдия Николаевна
SU1189745A1
US 7205115 B2, 17.04.2007
US 6714296 B2, 30.03.2004.

RU 2 490 690 C1

Авторы

Пискунов Николай Владимирович

Козлов Василий Николаевич

Даты

2013-08-20Публикация

2012-08-21Подача