Изобретение относится к силовой электронике, в частности к преобразователям с пониженными динамическими потерями в силовых полупроводниковых ключах и может быть использовано в схемах импульсных регуляторов, инверторов и активных выпрямителей.
Известна схема преобразователя, в которой с помощью элементов резонансного LC контура обеспечивается мягкое включение транзисторов при нулевом напряжении (см. патент США №4720668, опубл. 19.01.1988).
Недостатком данного решения является то, что интервал паузы в схеме является фиксированным. При этом регулирование выходного напряжения и мощности в схеме можно производить только за счет изменения частоты коммутации.
Наиболее близким по технической сути является решение (см. патент США №5262930, опубл. 16.11.1993), включающее силовой коммутатор с параллельно присоединенным к нему резонансным дросселем. Подключение силового коммутатора с параллельным резонансным дросселем последовательно с основным ключом преобразователя обеспечивает мягкую коммутация основного ключа при нулевом напряжении и снижает энергию динамических потерь в схеме. При этом в схеме используется широтно-импульсное регулирование выходного напряжения и мощности при постоянной частоте коммутации. Однако процесс выключения при нулевом напряжении не позволяет эффективно снижать энергию динамических потерь в мощных силовых коммутаторах с биполярным механизмом передачи тока (IGBT, GTO, IGCT). Для практического применения подобного решения требуется существенное замедление скорости изменения напряжения на основном ключе за счет подключения к его выходной цепи внешнего конденсатора относительно большой емкости.
Технический результат устройства по настоящему изобретению заключается в следующем:
1. Один вспомогательный силовой коммутатор с резонансным LLC контуром может использоваться для мягкой коммутации сразу двух ключевых элементов преобразователя: основного ключа и ему противофазного.
2. Подключение параллельно вспомогательному силовому коммутатору дополнительного конденсатора позволяет обеспечить предварительный разряд выходной емкости и отпирание основных ключей преобразователя при нулевом напряжении.
3. Подключение последовательно со вспомогательным силовым коммутатором дополнительного дросселя позволяет обеспечить плавное изменение тока в контуре коммутации и запирание основных ключей преобразователя при нулевом токе, что, в отличие от ближайшего аналога, исключает применение дополнительных конденсаторов относительно большой емкости, подключаемых параллельно к каждому из основных ключей.
Указанный технический результат достигается благодаря тому, что в силовом коммутаторе, содержащем ключ с параллельно присоединенным к нему дросселем, причем один из выводов ключа образует первый силовой вывод коммутатора, в соответствии с настоящим изобретением параллельно к ключу присоединен конденсатор, а последовательно - дополнительный дроссель, свободный вывод которого образует второй силовой вывод коммутатора.
При этом точка соединения ключа с дополнительным дросселем может образовывать дополнительный силовой вывод коммутатора.
Изобретение иллюстрируется приложенными чертежами, на которых одинаковые элементы обозначены одними и теми же ссылочными позициями.
На Фиг.1 представлен силовой коммутатор в соответствии с изобретением.
На Фиг.2 представлен силовой коммутатор по Фиг.1 с дополнительным силовым выводом.
На Фиг.3 представлена схема ближайшего аналога.
На Фиг.4 представлен силовой коммутатор по Фиг.1 при его подключении к базовому контуру коммутации последовательно с основным ключом.
На Фиг.5 представлены основные осциллограммы процессов мягкой коммутации для схемы Фиг.4.
На Фиг.6 представлен силовой коммутатор по Фиг.1 при его подключении к базовому контуру коммутации последовательно с противофазным диодом.
На Фиг.7 представлены основные осциллограммы процессов мягкой коммутации для схемы Фиг.6.
На Фиг.8 представлен силовой коммутатор по Фиг.2 при его подключении к базовому контуру коммутации с дополнительным дросселем, включенным последовательно с противофазным диодом.
На Фиг.9 представлены основные осциллограммы процессов мягкой коммутации для схемы Фиг.8.
На Фиг.10 представлен силовой коммутатор по Фиг.2 при его подключении к базовому контуру коммутации с дополнительным дросселем, включенным последовательно с основным ключом.
На Фиг.11 представлены основные осциллограммы процессов мягкой коммутации для схемы Фиг.10.
На Фиг.12 представлен силовой коммутатор по Фиг.1, подключенный последовательно с силовым ключом преобразователя постоянного напряжения (повышающий импульсный регулятор).
На Фиг.13 представлен силовой коммутатор по Фиг.1, подключенный последовательно с противофазным диодом преобразователя постоянного напряжения (повышающий импульсный регулятор).
На Фиг.14 представлен силовой коммутатор по Фиг.2, в котором дополнительный дроссель подключен последовательно с силовым ключом преобразователя постоянного напряжения (повышающий импульсный регулятор).
На Фиг.15 представлен силовой коммутатор по Фиг.2, в котором дополнительный дроссель подключен последовательно с противофазным диодом преобразователя постоянного напряжения (повышающий импульсный регулятор).
На Фиг.16 представлен силовой коммутатор по Фиг.1, подключенный к цепи постоянного тока инвертора напряжения.
На Фиг.17 представлен силовой коммутатор по Фиг.1, подключенный к цепи постоянного тока активного выпрямителя напряжения.
На Фиг.18 представлен силовой коммутатор по Фиг.1, подключенный к цепи постоянного тока инвертора тока последовательно с однонаправленными ключами ключевого блока инвертора.
На Фиг.19 представлен силовой коммутатор по Фиг.1, подключенный к цепи постоянного тока инвертора тока последовательно с дополнительным ключом.
На Фиг.20 представлен силовой коммутатор по Фиг.2, подключенный к цепи постоянного тока инвертора тока (дополнительный дроссель включен последовательно с однонаправленными ключами ключевого блока инвертора).
На Фиг.21 представлен силовой коммутатор по Фиг.2, подключенный к цепи постоянного тока инвертора тока (дополнительный дроссель включен последовательно с дополнительным ключом).
На Фиг.22 представлено три силовых коммутатора по Фиг.1, подключенных к цепи переменного тока инвертора напряжения последовательно с ключами катодной группы инвертора.
На Фиг.23 представлено три силовых коммутатора по Фиг.1, подключенных к цепи переменного тока инвертора напряжения последовательно с ключами анодной группы инвертора.
На Фиг.24 представлено три силовых коммутатора по Фиг.2, подключенных к цепи переменного тока инвертора напряжения (дополнительные дроссели включены последовательно с ключами катодной группы инвертора).
На Фиг.25 представлено три силовых коммутатора по Фиг.2, подключенных к цепи переменного тока инвертора напряжения (дополнительные дроссели включены последовательно с ключами анодной группы инвертора).
Устройство (Фиг.1) содержит: ключ 1, дроссель 2, конденсатор 3 и дополнительный дроссель 4. На чертежах показаны также первый силовой вывод 5 и второй силовой вывод 6.
Дроссель 2 и конденсатор 3 включены параллельно ключу 1, дополнительный дроссель 4 включен последовательно с ключом 1, при этом положительный вывод ключа 1 образует первый силовой вывод 5, а свободный вывод дополнительного дросселя 4 образует второй силовой вывод 6.
Как показано на Фиг.2, точка соединения ключа 1 с дополнительным дросселем 4 образует дополнительный силовой вывод 7 устройства.
Предложенное устройство работает следующим образом.
Рассмотрим работу силового коммутатора при его подключении к базовому контуру коммутации, к схеме которого сводятся контуры коммутации тока в регуляторах напряжения, инверторах и активных выпрямителях (Фиг.4). Данная схема содержит основной ключ S со встречно-параллельным диодом, противофазный диод D, источник J тока и источник Е напряжения. Силовой коммутатор с резонансным LLC контуром в соответствии с изобретением подключается последовательно к основному ключу S. Элементы резонансного LLC контура имеют следующие параметры: дроссель 2 - индуктивность L2; конденсатор 3 - емкость С3; дополнительный дроссель 4 - индуктивность L4.
В начальный момент времени основной ключ S выключен, а силовой коммутатор 1 включен, и через него замыкается начальный ток дросселя 2, равный величине I0. Значение I0 будет определено далее. Соответственно состоянию ключей напряжение на конденсаторе 3 и ток дополнительного дросселя 4 равны нулю. Ток J нагрузки замыкается через противофазный диод D.
Представим основные интервалы мягкой коммутации тока нагрузки от диода D на ключ S и обратно.
Выключение ключа 1 при нулевом напряжении и включение основного ключа S при нулевом напряжении.
Снятием сигнала управления выключают ключ 1, который за счет параллельно включенного конденсатора 3 выключается при нулевом напряжении. При этом ток дросселя 2 начинает заряжать конденсатор 3:
где
Тогда напряжение на основном ключе S изменяется в соответствии с формулой:
Если выполняется условие:
основной ключ S может быть включен при нулевом напряжении за счет спада напряжения UC3(t) до нулевого уровня через интервал времени:
Включение ключа 1 при нулевом напряжении.
После включения основного ключа S в работу вступает дополнительный дроссель 4, при этом изменяется резонансная частота в LLC контуре, которая становится равной:
где
Напряжение на конденсаторе 3 будет изменяться в соответствии с формулой:
где
При условии:
ключ 1 можно включить при нулевом напряжении через интервал времени:
В конце данного интервала ток дросселя 2 спадает практически до нуля, а в основном ключе S появляется отрицательный ток ΔI1, протекающий через встречно-параллельный диод ключа S:
Линейное нарастание тока в основном ключе S и выключение противофазного диода при нулевом токе.
После включения ключа 1 ток основного ключа S будет изменяться по линейному закону:
Через интервал времени Δt3 ток основного ключа S достигает значения тока нагрузки, а противофазный диод D запирается при нулевом токе:
Далее ток J нагрузки протекает через основной ключ S, находящийся во включенном состоянии в течение интервала проводимости.
Выключение ключа 1 при нулевом напряжении и включение противофазного диода D при нулевом токе.
Снятием сигнала управления выключают ключ 1, который за счет параллельного конденсатора 3 выключается при нулевом напряжении. При этом напряжение на конденсаторе 3 изменяется в соответствии с формулой:
Через интервал времени Δt4 напряжение UC3(t) возрастает до напряжения Е источника, и противофазный диод D включается при нулевом токе, поскольку ток нагрузки по-прежнему протекает через дополнительный дроссель 4 и основной ключ S. Значение Δt4 можно определить по формуле:
Через интервал времени Δt4 ток дросселя 2 возрастает до значения:
Выключение основного ключа S при нулевом токе.
После включения противофазного диода LLC контур подключается к источнику Е напряжения.
При этом напряжение на конденсаторе 3 начинает изменяться в соответствии с формулой:
Ток в дросселе 2 изменяется в соответствии с формулой:
Ток в дополнительном дросселе 4 и основном ключе S изменяется в соответствии с формулой:
Если выполняется условие:
ток дополнительного дросселя 4 достигает нулевого значения, и основной ключ S можно выключить при нулевом токе.
На данном интервале в основном ключе S появляется отрицательный ток, протекающий через его встречно-параллельный диод. Амплитуда отрицательного тока определяется выражением:
Длительность интервала выключения основного ключа S при нулевом токе определяется формулой:
После выключения основного ключа S ток дросселя 2 увеличивается до значения:
Отметим, что напряжение на конденсаторе 3 в конце интервала Δt5, спадает практически до нуля.
Восстановление начальной энергии в LLC контуре и включение ключа 1 при нулевом напряжении.
При выключенном основном ключе S и ключе 1 в параллельном LC контуре, образованном дросселем 2 и конденсатором 3, начинается колебательный процесс с частотой ω1:
При этом на конденсаторе 3 появляется отрицательное по отношению к ключу 1 напряжение. Через половину периода резонансной частоты ω1 напряжение на конденсаторе 3 спадает до нулевого значения, а ток дросселя 2 достигает начального значения IL2(Δt5), но с обратным знаком. Таким образом, в дросселе 2 восстанавливается начальное значение тока I0, с которого и начинался цикл коммутации:
Очевидно, что импульс управления на ключ 1 необходимо подать в течение рассматриваемого полупериода, тогда по его окончании произойдет автоматическое включение ключа 1 при нулевом напряжении.
После восстановления начальной энергии в LLC контуре можно начинать новый цикл коммутации и т.д.
Основные осциллограммы процессов мягкой коммутации для рассмотренного варианта представлены на Фиг.5, которые получены с помощью программы схемотехнического моделирования PSpice при следующих параметрах схемы:
Напряжение источника Е питания = 80 B.
Ток J нагрузки = 40 A.
Дроссель 2 - индуктивность 6,5 мкГн.
Дроссель 4 - индуктивность 1,0 мкГн.
Конденсатор 5 - емкость 0,1 мкФ.
Масштаб по вертикали:
Канал 1: напряжение на ключе S; 200 B/дел.
Канал 2: ток ключа S; 100 A/дел.
Канал 3: напряжение на ключе 1 и конденсаторе 3; 200 B/дел.
Канал 4: ток ключа 1; 100 A/дел.
Канал 5: ток дросселя 2; 100 A/дел.
Масштаб по горизонтали:
Время - 4 мкс/дел.
Условия мягкой коммутации в схеме не изменяются, если силовой коммутатор с резонансным LLC контуром выводится из цепи последовательного соединения с ключом S и включается последовательно в цепь противофазного диода D (Фиг.6). Это утверждение следует из того факта, что система уравнений, описывающих электрические процессы в схеме, остается неизменной, а ток и напряжение ключа S при перемещении силового коммутатора с резонансным LLC контуром в цепь диода D по-прежнему остаются независимыми переменными. Основные осциллограммы процессов мягкой коммутации для данного варианта показаны на Фиг.7, которые получены с помощью программы схемотехнического моделирования PSpice при следующих параметрах схемы:
Напряжение источника Е питания = 500 B.
Ток J нагрузки = 40 A.
Дроссель 2 - индуктивность 6,5 мкГн.
Дроссель 4 - индуктивность 1,0 мкГн.
Конденсатор 5 - емкость 0,1 мкФ.
Масштаб по вертикали:
Канал 1: напряжение на ключе S; 200 B/дел.
Канал 2: ток ключа S; 100 A/дел.
Канал 3: напряжение на ключе 1 и конденсаторе 3; 200 B/дел.
Канал 4: ток ключа 1; 100 A/дел.
Канал 5: ток дросселя 2; 100 A/дел.
Масштаб по горизонтали:
Время - 4 мкс/дел.
Условия мягкой коммутации в схеме не изменяются, если дополнительный дроссель 4 выводится из цепи последовательного соединения с ключом S и с помощью дополнительного силового вывода 7 включается последовательно в цепь противофазного диода D (Фиг.8). Это утверждение следует из того факта, что система уравнений, описывающих электрические процессы в схеме, остается неизменной, а ток и напряжение ключа S при перемещении дополнительного дросселя 4 в цепь диода D по-прежнему остаются независимыми переменными. Основные осциллограммы процессов мягкой коммутации для данного варианта представлены на Фиг.9, которые получены с помощью программы схемотехнического моделирования PSpice при следующих параметрах схемы:
Напряжение источника Е питания = 500 B.
Ток J нагрузки = 40 A.
Дроссель 2 - индуктивность 6,5 мкГн.
Дроссель 4 - индуктивность 1,0 мкГн.
Конденсатор 5 - емкость 0,1 мкФ.
Масштаб по вертикали:
Канал 1: напряжение на ключе S; 200 B/дел.
Канал 2: ток ключа S; 100 A/дел.
Канал 3: напряжение на ключе 1 и конденсаторе 3; 200 B/дел.
Канал 4: ток ключа 1; 100 A/дел.
Канал 5: ток дросселя 2; 100 A/дел.
Масштаб по горизонтали:
Время - 4 мкс/дел.
Условия мягкой коммутации в схеме не изменяются, если ключ 1 с параллельно подключенными к нему дросселем 2 и конденсатором 3 выводится из цепи последовательного соединения с ключом S и с помощью дополнительного силового вывода 7 включается последовательно в цепь противофазного диода D (Фиг.10). Это утверждение следует из того факта, что система уравнений, описывающих электрические процессы в схеме, остается неизменной, а ток и напряжение ключа S при перемещении ключа 1 с параллельно подключенными к нему дросселем 2 и конденсатором 3 в цепь диода D по-прежнему остаются независимыми переменными. Основные осциллограммы процессов мягкой коммутации для данного варианта представлены на Фиг.11, которые получены с помощью программы схемотехнического моделирования PSpice при следующих параметрах схемы:
Напряжение источника Е питания = 500 B.
Ток J нагрузки = 40 A.
Дроссель 2 - индуктивность 6,5 мкГн.
Дроссель 4 - индуктивность 1,0 мкГн.
Конденсатор 5 - емкость 0,1 мкФ.
Масштаб по вертикали:
Канал 1: напряжение на ключе S; 200 B/дел.
Канал 2: ток ключа S; 100 A/дел.
Канал 3: напряжение на ключе 1 и конденсаторе 3; 200 B/дел.
Канал 4: ток ключа 1; 100 A/дел.
Канал 5: ток дросселя 2; 100 A/дел.
Масштаб по горизонтали:
Время - 4 мкс/дел.
Принцип работы силового коммутатора с резонансным LLC контуром не изменяется при применении различных типов ключей: биполярных и полевых транзисторов, тиристоров, биполярных транзисторов с изолированным затвором - IGBT и др.
Далее рассмотрим варианты конкретного применения предложенного устройства.
В преобразователях постоянного напряжения повышающего типа контур коммутации состоит из основного транзистора Т, противофазного ему диода D, источника напряжения на выходном фильтровом конденсаторе Сф и источника тока во входном дросселе Lф. Подключение силового коммутатора с резонансным LLC контуром в соответствии с настоящим изобретением (Фиг.12, 13, 14, 15) позволяет обеспечить мягкую коммутацию ключевых элементов преобразователя.
На Фиг.12 представлен силовой коммутатор с резонансным LLC контуром по Фиг.1, подключенный последовательно с силовым ключом преобразователя постоянного напряжения (повышающий импульсный регулятор).
На Фиг.13 представлен силовой коммутатор с резонансным LLC контуром по Фиг.1, подключенный последовательно с противофазным диодом преобразователя постоянного напряжения (повышающий импульсный регулятор).
На Фиг.14 представлен силовой коммутатор с резонансным LLC контуром по Фиг.2, дополнительный дроссель подключен последовательно с силовым ключом преобразователя постоянного напряжения (повышающий импульсный регулятор).
На Фиг.15 представлен силовой коммутатор с резонансным LLC контуром по Фиг.2, дополнительный дроссель подключен последовательно с противофазным диодом преобразователя постоянного напряжения (повышающий импульсный регулятор).
В трехфазных инверторах напряжения дополнительный ключ Ta в цепи постоянного тока инвертора, встречно-параллельные диоды ключевого блока инвертора, источник Е входного напряжения и входной ток инвертора образуют контур коммутации, к которому в соответствии с настоящим изобретением может быть подключен силовой коммутатор с резонансным LLC контуром. На Фиг.16 представлен силовой коммутатор с резонансным LLC контуром по Фиг.1, подключенный к цепи постоянного тока инвертора напряжения последовательно с дополнительным ключом Та.
В трехфазных активных выпрямителях напряжения дополнительный диод Da в цепи постоянного тока инвертора, основные ключи ключевого блока активного выпрямителя, источник выходного напряжения на фильтровом конденсаторе Сф и выходной ток активного выпрямителя образуют контур коммутации, к которому в соответствии с настоящим изобретением может быть подключен силовой коммутатор с резонансным LLC контуром. На Фиг.17 представлен силовой коммутатор с резонансным LLC контуром по Фиг.1, подключенный к цепи постоянного тока активного выпрямителя напряжения последовательно с дополнительным диодом Da.
В трехфазных инверторах тока дополнительный ключ Та в цепи постоянного тока инвертора, однонаправленные ключи ключевого блока инвертора, источник входного тока на фильтровом дросселе Lф и напряжение на входе инвертора образуют контур коммутации, к которому в соответствии с настоящим изобретением (Фиг.18, 19, 20, 21) может быть подключен силовой коммутатор с резонансным LLC контуром.
На Фиг.18 представлен силовой коммутатор с резонансным LLC контуром по Фиг.1, подключенный к цепи постоянного тока инвертора тока последовательно с однонаправленными ключами ключевого блока инвертора.
На Фиг.19 представлен силовой коммутатор с резонансным LLC контуром по Фиг.1, подключенный к цепи постоянного тока инвертора тока последовательно с дополнительным ключом.
На Фиг.20 представлен силовой коммутатор с резонансным LLC контуром по Фиг.2, подключенный к цепи постоянного тока инвертора тока (дополнительный дроссель включен последовательно с однонаправленными ключами ключевого блока инвертора).
На Фиг.21 представлен силовой коммутатор с резонансным LLC контуром по Фиг.2, подключенный к цепи постоянного тока инвертора тока (дополнительный дроссель включен последовательно с дополнительным ключом).
На стороне переменного тока трехфазных инверторов напряжения верхний и нижний ключ в стойке ключей каждой из фаз инвертора, источник Е постоянного напряжения и фазный ток инвертора образуют контур коммутации, к которому в соответствии с настоящим изобретением (Фиг.22, 23, 24, 25) может быть подключен силовой коммутатор с резонансным LLC контуром.
На Фиг.22 представлено три силовых коммутатора с резонансным LLC контуром по Фиг.1, подключенных к цепи переменного тока инвертора напряжения последовательно с основными ключами катодной группы инвертора. При этом коммутация основных ключей анодной группы проводится при помощи тех же силовых коммутаторов с резонансным LLC контуром, которые для ключей анодной группы можно рассматривать как включенные последовательно с их противофазными диодами, в качестве которых выступают встречно-параллельные диоды основных ключей катодной группы.
На Фиг.23 представлено три силовых коммутатора с резонансным LLC контуром по Фиг.1, подключенных к цепи переменного тока инвертора напряжения последовательно с основными ключами анодной группы инвертора. При этом коммутация основных ключей катодной группы проводится при помощи тех же силовых коммутаторов с резонансным LLC контуром, которые для ключей катодной группы можно рассматривать как включенные последовательно с их противофазными диодами, в качестве которых выступают встречно-параллельные диоды основных ключей анодной группы.
На Фиг.24 представлено три силовых коммутатора с резонансным LLC контуром по Фиг.2, подключенных к цепи переменного тока инвертора напряжения (дополнительные дроссели включены последовательно с ключами катодной группы инвертора). При этом коммутация основных ключей анодной группы проводится при помощи тех же силовых коммутаторов с резонансным LLC контуром, которые для ключей анодной группы можно рассматривать как решение по Фиг.2 с дополнительными дросселями, включенными последовательно с их противофазными диодами, в качестве которых выступают встречно-параллельные диоды основных ключей катодной группы.
На Фиг.25 представлено три силовых коммутатора с резонансным LLC контуром по Фиг.2, подключенных к цепи переменного тока инвертора напряжения (дроссели включены последовательно с ключами анодной группы инвертора). При этом коммутация основных ключей катодной группы проводится при помощи тех же силовых коммутаторов с резонансным LLC контуром, которые для ключей катодной группы можно рассматривать как решение по Фиг.2 с дополнительными дросселями, включенными последовательно с их противофазными диодами, в качестве которых выступают встречно-параллельные диоды основных ключей анодной группы.
название | год | авторы | номер документа |
---|---|---|---|
РЕЗОНАНСНЫЙ КОММУТАТОР | 2012 |
|
RU2516450C2 |
СИЛОВОЙ МОДУЛЬ | 2012 |
|
RU2503118C1 |
РЕЗОНАНСНЫЙ КОММУТАТОР (ВАРИАНТЫ) | 2012 |
|
RU2490776C1 |
РЕЗОНАНСНЫЙ КОММУТАТОР (ВАРИАНТЫ) | 2012 |
|
RU2490775C1 |
СИЛОВОЙ МОДУЛЬ С МУЛЬТИРЕЗОНАНСНЫМ КОНТУРОМ (ВАРИАНТЫ) | 2011 |
|
RU2457600C1 |
РЕЗОНАНСНЫЙ КОММУТАТОР (ВАРИАНТЫ) | 2012 |
|
RU2516451C2 |
БАЗОВЫЙ ЭЛЕМЕНТ СИЛОВОГО МОДУЛЯ | 2019 |
|
RU2711311C1 |
СПОСОБ УПРАВЛЕНИЯ РЕЗОНАНСНЫМ КЛЮЧОМ | 2019 |
|
RU2711312C1 |
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНЫМ СОГЛАСОВАННЫМ ИНВЕРТОРОМ С РЕЗОНАНСНОЙ КОММУТАЦИЕЙ | 2009 |
|
RU2453977C2 |
ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ | 2006 |
|
RU2316884C2 |
Изобретение относится к силовой электронике, в частности к преобразователям с пониженными динамическими потерями в силовых полупроводниковых ключах, и может быть использовано в схемах импульсных регуляторов, инверторов и активных выпрямителей. Технический результат заключается в плавном изменении тока в контуре коммутации и запирании основных ключей преобразователя при нулевом токе, что позволяет снизить динамические потери в силовых коммутаторах импульсных регуляторов, инверторов и активных выпрямителей. Для этого заявленное устройство содержит ключ (1) с параллельно присоединенным к нему дросселем (2), один из выводов которого образует первый силовой вывод (5) коммутатора, при этом параллельно ключу (1) присоединен конденсатор (3), а последовательно - дополнительный дроссель (4), свободный вывод которого образует второй силовой вывод (6) коммутатора. 1 з.п. ф-лы, 25 ил.
1. Силовой коммутатор, содержащий ключ с параллельно присоединенным к нему дросселем, причем один из выводов ключа образует первый силовой вывод коммутатора, отличающийся тем, что параллельно к ключу присоединен конденсатор, а последовательно - дополнительный дроссель, свободный вывод которого образует второй силовой вывод коммутатора.
2. Силовой коммутатор по п.1, отличающийся тем, что точка соединения ключа с дополнительным дросселем образует дополнительный силовой вывод коммутатора.
US 5262930 A, 16.11.1993 | |||
УСТРОЙСТВО ДЛЯ КОММУТАЦИИ И ТОКОВОЙ ЗАЩИТЫ ЦЕПЕЙ ПОСТОЯННОГО ТОКА | 1999 |
|
RU2153217C1 |
УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА РЕГУЛИРОВАНИЯ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 2009 |
|
RU2408129C1 |
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ | 1990 |
|
RU2016484C1 |
СПОСОБ ФОРМИРОВАНИЯ ОТВЕРСТИЙ ПРОИЗВОЛЬНОЙ ФОРМЫ В ЦИЛИНДРИЧЕСКИХ И КОНИЧЕСКИХ ДЕТАЛЯХ ГИДРОАБРАЗИВНОЙ СТРУЕЙ | 2016 |
|
RU2625381C1 |
Авторы
Даты
2013-08-20—Публикация
2012-07-25—Подача